Spaces:
Configuration error
Configuration error
File size: 11,002 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
"""
This file contains the definition of the SMPL model
It is adapted from opensource project GraphCMR (https://github.com/nkolot/GraphCMR/)
"""
from __future__ import division
import torch
import torch.nn as nn
import numpy as np
import scipy.sparse
try:
import cPickle as pickle
except ImportError:
import pickle
from custom_mesh_graphormer.utils.geometric_layers import rodrigues
import custom_mesh_graphormer.modeling.data.config as cfg
from comfy.model_management import get_torch_device
from wrapper_for_mps import sparse_to_dense
device = get_torch_device()
class SMPL(nn.Module):
def __init__(self, gender='neutral'):
super(SMPL, self).__init__()
if gender=='m':
model_file=cfg.SMPL_Male
elif gender=='f':
model_file=cfg.SMPL_Female
else:
model_file=cfg.SMPL_FILE
smpl_model = pickle.load(open(model_file, 'rb'), encoding='latin1')
J_regressor = smpl_model['J_regressor'].tocoo()
row = J_regressor.row
col = J_regressor.col
data = J_regressor.data
i = torch.LongTensor([row, col])
v = torch.FloatTensor(data)
J_regressor_shape = [24, 6890]
self.register_buffer('J_regressor', torch.sparse_coo_tensor(i, v, J_regressor_shape).to_dense())
self.register_buffer('weights', torch.FloatTensor(smpl_model['weights']))
self.register_buffer('posedirs', torch.FloatTensor(smpl_model['posedirs']))
self.register_buffer('v_template', torch.FloatTensor(smpl_model['v_template']))
self.register_buffer('shapedirs', torch.FloatTensor(np.array(smpl_model['shapedirs'])))
self.register_buffer('faces', torch.from_numpy(smpl_model['f'].astype(np.int64)))
self.register_buffer('kintree_table', torch.from_numpy(smpl_model['kintree_table'].astype(np.int64)))
id_to_col = {self.kintree_table[1, i].item(): i for i in range(self.kintree_table.shape[1])}
self.register_buffer('parent', torch.LongTensor([id_to_col[self.kintree_table[0, it].item()] for it in range(1, self.kintree_table.shape[1])]))
self.pose_shape = [24, 3]
self.beta_shape = [10]
self.translation_shape = [3]
self.pose = torch.zeros(self.pose_shape)
self.beta = torch.zeros(self.beta_shape)
self.translation = torch.zeros(self.translation_shape)
self.verts = None
self.J = None
self.R = None
J_regressor_extra = torch.from_numpy(np.load(cfg.JOINT_REGRESSOR_TRAIN_EXTRA)).float()
self.register_buffer('J_regressor_extra', J_regressor_extra)
self.joints_idx = cfg.JOINTS_IDX
J_regressor_h36m_correct = torch.from_numpy(np.load(cfg.JOINT_REGRESSOR_H36M_correct)).float()
self.register_buffer('J_regressor_h36m_correct', J_regressor_h36m_correct)
def forward(self, pose, beta):
device = pose.device
batch_size = pose.shape[0]
v_template = self.v_template[None, :]
shapedirs = self.shapedirs.view(-1,10)[None, :].expand(batch_size, -1, -1)
beta = beta[:, :, None]
v_shaped = torch.matmul(shapedirs, beta).view(-1, 6890, 3) + v_template
# batched sparse matmul not supported in pytorch
J = []
for i in range(batch_size):
J.append(torch.matmul(self.J_regressor, v_shaped[i]))
J = torch.stack(J, dim=0)
# input it rotmat: (bs,24,3,3)
if pose.ndimension() == 4:
R = pose
# input it rotmat: (bs,72)
elif pose.ndimension() == 2:
pose_cube = pose.view(-1, 3) # (batch_size * 24, 1, 3)
R = rodrigues(pose_cube).view(batch_size, 24, 3, 3)
R = R.view(batch_size, 24, 3, 3)
I_cube = torch.eye(3)[None, None, :].to(device)
# I_cube = torch.eye(3)[None, None, :].expand(theta.shape[0], R.shape[1]-1, -1, -1)
lrotmin = (R[:,1:,:] - I_cube).view(batch_size, -1)
posedirs = self.posedirs.view(-1,207)[None, :].expand(batch_size, -1, -1)
v_posed = v_shaped + torch.matmul(posedirs, lrotmin[:, :, None]).view(-1, 6890, 3)
J_ = J.clone()
J_[:, 1:, :] = J[:, 1:, :] - J[:, self.parent, :]
G_ = torch.cat([R, J_[:, :, :, None]], dim=-1)
pad_row = torch.FloatTensor([0,0,0,1]).to(device).view(1,1,1,4).expand(batch_size, 24, -1, -1)
G_ = torch.cat([G_, pad_row], dim=2)
G = [G_[:, 0].clone()]
for i in range(1, 24):
G.append(torch.matmul(G[self.parent[i-1]], G_[:, i, :, :]))
G = torch.stack(G, dim=1)
rest = torch.cat([J, torch.zeros(batch_size, 24, 1).to(device)], dim=2).view(batch_size, 24, 4, 1)
zeros = torch.zeros(batch_size, 24, 4, 3).to(device)
rest = torch.cat([zeros, rest], dim=-1)
rest = torch.matmul(G, rest)
G = G - rest
T = torch.matmul(self.weights, G.permute(1,0,2,3).contiguous().view(24,-1)).view(6890, batch_size, 4, 4).transpose(0,1)
rest_shape_h = torch.cat([v_posed, torch.ones_like(v_posed)[:, :, [0]]], dim=-1)
v = torch.matmul(T, rest_shape_h[:, :, :, None])[:, :, :3, 0]
return v
def get_joints(self, vertices):
"""
This method is used to get the joint locations from the SMPL mesh
Input:
vertices: size = (B, 6890, 3)
Output:
3D joints: size = (B, 38, 3)
"""
joints = torch.einsum('bik,ji->bjk', [vertices, self.J_regressor])
joints_extra = torch.einsum('bik,ji->bjk', [vertices, self.J_regressor_extra])
joints = torch.cat((joints, joints_extra), dim=1)
joints = joints[:, cfg.JOINTS_IDX]
return joints
def get_h36m_joints(self, vertices):
"""
This method is used to get the joint locations from the SMPL mesh
Input:
vertices: size = (B, 6890, 3)
Output:
3D joints: size = (B, 24, 3)
"""
joints = torch.einsum('bik,ji->bjk', [vertices, self.J_regressor_h36m_correct])
return joints
class SparseMM(torch.autograd.Function):
"""Redefine sparse @ dense matrix multiplication to enable backpropagation.
The builtin matrix multiplication operation does not support backpropagation in some cases.
"""
@staticmethod
def forward(ctx, sparse, dense):
ctx.req_grad = dense.requires_grad
ctx.save_for_backward(sparse)
return torch.matmul(sparse, dense)
@staticmethod
def backward(ctx, grad_output):
grad_input = None
sparse, = ctx.saved_tensors
if ctx.req_grad:
grad_input = torch.matmul(sparse.t(), grad_output)
return None, grad_input
def spmm(sparse, dense):
sparse = sparse.to(device)
dense = dense.to(device)
return SparseMM.apply(sparse, dense)
def scipy_to_pytorch(A, U, D):
"""Convert scipy sparse matrices to pytorch sparse matrix."""
ptU = []
ptD = []
for i in range(len(U)):
u = scipy.sparse.coo_matrix(U[i])
i = torch.LongTensor(np.array([u.row, u.col]))
v = torch.FloatTensor(u.data)
ptU.append(sparse_to_dense(torch.sparse_coo_tensor(i, v, u.shape)))
for i in range(len(D)):
d = scipy.sparse.coo_matrix(D[i])
i = torch.LongTensor(np.array([d.row, d.col]))
v = torch.FloatTensor(d.data)
ptD.append(sparse_to_dense(torch.sparse_coo_tensor(i, v, d.shape)))
return ptU, ptD
def adjmat_sparse(adjmat, nsize=1):
"""Create row-normalized sparse graph adjacency matrix."""
adjmat = scipy.sparse.csr_matrix(adjmat)
if nsize > 1:
orig_adjmat = adjmat.copy()
for _ in range(1, nsize):
adjmat = adjmat * orig_adjmat
adjmat.data = np.ones_like(adjmat.data)
for i in range(adjmat.shape[0]):
adjmat[i,i] = 1
num_neighbors = np.array(1 / adjmat.sum(axis=-1))
adjmat = adjmat.multiply(num_neighbors)
adjmat = scipy.sparse.coo_matrix(adjmat)
row = adjmat.row
col = adjmat.col
data = adjmat.data
i = torch.LongTensor(np.array([row, col]))
v = torch.from_numpy(data).float()
adjmat = sparse_to_dense(torch.sparse_coo_tensor(i, v, adjmat.shape))
return adjmat
def get_graph_params(filename, nsize=1):
"""Load and process graph adjacency matrix and upsampling/downsampling matrices."""
data = np.load(filename, encoding='latin1', allow_pickle=True)
A = data['A']
U = data['U']
D = data['D']
U, D = scipy_to_pytorch(A, U, D)
A = [adjmat_sparse(a, nsize=nsize) for a in A]
return A, U, D
class Mesh(object):
"""Mesh object that is used for handling certain graph operations."""
def __init__(self, filename=cfg.SMPL_sampling_matrix,
num_downsampling=1, nsize=1, device=torch.device('cuda')):
self._A, self._U, self._D = get_graph_params(filename=filename, nsize=nsize)
# self._A = [a.to(device) for a in self._A]
self._U = [u.to(device) for u in self._U]
self._D = [d.to(device) for d in self._D]
self.num_downsampling = num_downsampling
# load template vertices from SMPL and normalize them
smpl = SMPL()
ref_vertices = smpl.v_template
center = 0.5*(ref_vertices.max(dim=0)[0] + ref_vertices.min(dim=0)[0])[None]
ref_vertices -= center
ref_vertices /= ref_vertices.abs().max().item()
self._ref_vertices = ref_vertices.to(device)
self.faces = smpl.faces.int().to(device)
# @property
# def adjmat(self):
# """Return the graph adjacency matrix at the specified subsampling level."""
# return self._A[self.num_downsampling].float()
@property
def ref_vertices(self):
"""Return the template vertices at the specified subsampling level."""
ref_vertices = self._ref_vertices
for i in range(self.num_downsampling):
ref_vertices = torch.spmm(self._D[i], ref_vertices)
return ref_vertices
def downsample(self, x, n1=0, n2=None):
"""Downsample mesh."""
if n2 is None:
n2 = self.num_downsampling
if x.ndimension() < 3:
for i in range(n1, n2):
x = spmm(self._D[i], x)
elif x.ndimension() == 3:
out = []
for i in range(x.shape[0]):
y = x[i]
for j in range(n1, n2):
y = spmm(self._D[j], y)
out.append(y)
x = torch.stack(out, dim=0)
return x
def upsample(self, x, n1=1, n2=0):
"""Upsample mesh."""
if x.ndimension() < 3:
for i in reversed(range(n2, n1)):
x = spmm(self._U[i], x)
elif x.ndimension() == 3:
out = []
for i in range(x.shape[0]):
y = x[i]
for j in reversed(range(n2, n1)):
y = spmm(self._U[j], y)
out.append(y)
x = torch.stack(out, dim=0)
return x
|