Spaces:
Configuration error
Configuration error
File size: 36,256 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 |
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
Training and evaluation codes for
3D human body mesh reconstruction from an image
"""
from __future__ import absolute_import, division, print_function
import argparse
import os
import os.path as op
import code
import json
import time
import datetime
import torch
import torchvision.models as models
from torchvision.utils import make_grid
import gc
import numpy as np
import cv2
from custom_mesh_graphormer.modeling.bert import BertConfig, Graphormer
from custom_mesh_graphormer.modeling.bert import Graphormer_Body_Network as Graphormer_Network
from custom_mesh_graphormer.modeling._smpl import SMPL, Mesh
from custom_mesh_graphormer.modeling.hrnet.hrnet_cls_net_gridfeat import get_cls_net_gridfeat
from custom_mesh_graphormer.modeling.hrnet.config import config as hrnet_config
from custom_mesh_graphormer.modeling.hrnet.config import update_config as hrnet_update_config
import custom_mesh_graphormer.modeling.data.config as cfg
from custom_mesh_graphormer.datasets.build import make_data_loader
from custom_mesh_graphormer.utils.logger import setup_logger
from custom_mesh_graphormer.utils.comm import synchronize, is_main_process, get_rank, get_world_size, all_gather
from custom_mesh_graphormer.utils.miscellaneous import mkdir, set_seed
from custom_mesh_graphormer.utils.metric_logger import AverageMeter, EvalMetricsLogger
from custom_mesh_graphormer.utils.renderer import Renderer, visualize_reconstruction, visualize_reconstruction_test
from custom_mesh_graphormer.utils.metric_pampjpe import reconstruction_error
from custom_mesh_graphormer.utils.geometric_layers import orthographic_projection
from comfy.model_management import get_torch_device
device = get_torch_device()
from azureml.core.run import Run
aml_run = Run.get_context()
def save_checkpoint(model, args, epoch, iteration, num_trial=10):
checkpoint_dir = op.join(args.output_dir, 'checkpoint-{}-{}'.format(
epoch, iteration))
if not is_main_process():
return checkpoint_dir
mkdir(checkpoint_dir)
model_to_save = model.module if hasattr(model, 'module') else model
for i in range(num_trial):
try:
torch.save(model_to_save, op.join(checkpoint_dir, 'model.bin'))
torch.save(model_to_save.state_dict(), op.join(checkpoint_dir, 'state_dict.bin'))
torch.save(args, op.join(checkpoint_dir, 'training_args.bin'))
logger.info("Save checkpoint to {}".format(checkpoint_dir))
break
except:
pass
else:
logger.info("Failed to save checkpoint after {} trails.".format(num_trial))
return checkpoint_dir
def save_scores(args, split, mpjpe, pampjpe, mpve):
eval_log = []
res = {}
res['mPJPE'] = mpjpe
res['PAmPJPE'] = pampjpe
res['mPVE'] = mpve
eval_log.append(res)
with open(op.join(args.output_dir, split+'_eval_logs.json'), 'w') as f:
json.dump(eval_log, f)
logger.info("Save eval scores to {}".format(args.output_dir))
return
def adjust_learning_rate(optimizer, epoch, args):
"""
Sets the learning rate to the initial LR decayed by x every y epochs
x = 0.1, y = args.num_train_epochs/2.0 = 100
"""
lr = args.lr * (0.1 ** (epoch // (args.num_train_epochs/2.0) ))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def mean_per_joint_position_error(pred, gt, has_3d_joints):
"""
Compute mPJPE
"""
gt = gt[has_3d_joints == 1]
gt = gt[:, :, :-1]
pred = pred[has_3d_joints == 1]
with torch.no_grad():
gt_pelvis = (gt[:, 2,:] + gt[:, 3,:]) / 2
gt = gt - gt_pelvis[:, None, :]
pred_pelvis = (pred[:, 2,:] + pred[:, 3,:]) / 2
pred = pred - pred_pelvis[:, None, :]
error = torch.sqrt( ((pred - gt) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
return error
def mean_per_vertex_error(pred, gt, has_smpl):
"""
Compute mPVE
"""
pred = pred[has_smpl == 1]
gt = gt[has_smpl == 1]
with torch.no_grad():
error = torch.sqrt( ((pred - gt) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
return error
def keypoint_2d_loss(criterion_keypoints, pred_keypoints_2d, gt_keypoints_2d, has_pose_2d):
"""
Compute 2D reprojection loss if 2D keypoint annotations are available.
The confidence (conf) is binary and indicates whether the keypoints exist or not.
"""
conf = gt_keypoints_2d[:, :, -1].unsqueeze(-1).clone()
loss = (conf * criterion_keypoints(pred_keypoints_2d, gt_keypoints_2d[:, :, :-1])).mean()
return loss
def keypoint_3d_loss(criterion_keypoints, pred_keypoints_3d, gt_keypoints_3d, has_pose_3d, device):
"""
Compute 3D keypoint loss if 3D keypoint annotations are available.
"""
conf = gt_keypoints_3d[:, :, -1].unsqueeze(-1).clone()
gt_keypoints_3d = gt_keypoints_3d[:, :, :-1].clone()
gt_keypoints_3d = gt_keypoints_3d[has_pose_3d == 1]
conf = conf[has_pose_3d == 1]
pred_keypoints_3d = pred_keypoints_3d[has_pose_3d == 1]
if len(gt_keypoints_3d) > 0:
gt_pelvis = (gt_keypoints_3d[:, 2,:] + gt_keypoints_3d[:, 3,:]) / 2
gt_keypoints_3d = gt_keypoints_3d - gt_pelvis[:, None, :]
pred_pelvis = (pred_keypoints_3d[:, 2,:] + pred_keypoints_3d[:, 3,:]) / 2
pred_keypoints_3d = pred_keypoints_3d - pred_pelvis[:, None, :]
return (conf * criterion_keypoints(pred_keypoints_3d, gt_keypoints_3d)).mean()
else:
return torch.FloatTensor(1).fill_(0.).to(device)
def vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl, device):
"""
Compute per-vertex loss if vertex annotations are available.
"""
pred_vertices_with_shape = pred_vertices[has_smpl == 1]
gt_vertices_with_shape = gt_vertices[has_smpl == 1]
if len(gt_vertices_with_shape) > 0:
return criterion_vertices(pred_vertices_with_shape, gt_vertices_with_shape)
else:
return torch.FloatTensor(1).fill_(0.).to(device)
def rectify_pose(pose):
pose = pose.copy()
R_mod = cv2.Rodrigues(np.array([np.pi, 0, 0]))[0]
R_root = cv2.Rodrigues(pose[:3])[0]
new_root = R_root.dot(R_mod)
pose[:3] = cv2.Rodrigues(new_root)[0].reshape(3)
return pose
def run(args, train_dataloader, val_dataloader, Graphormer_model, smpl, mesh_sampler, renderer):
smpl.eval()
max_iter = len(train_dataloader)
iters_per_epoch = max_iter // args.num_train_epochs
if iters_per_epoch<1000:
args.logging_steps = 500
optimizer = torch.optim.Adam(params=list(Graphormer_model.parameters()),
lr=args.lr,
betas=(0.9, 0.999),
weight_decay=0)
# define loss function (criterion) and optimizer
criterion_2d_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_vertices = torch.nn.L1Loss().to(device)
if args.distributed:
Graphormer_model = torch.nn.parallel.DistributedDataParallel(
Graphormer_model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
logger.info(
' '.join(
['Local rank: {o}', 'Max iteration: {a}', 'iters_per_epoch: {b}','num_train_epochs: {c}',]
).format(o=args.local_rank, a=max_iter, b=iters_per_epoch, c=args.num_train_epochs)
)
start_training_time = time.time()
end = time.time()
Graphormer_model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
log_losses = AverageMeter()
log_loss_2djoints = AverageMeter()
log_loss_3djoints = AverageMeter()
log_loss_vertices = AverageMeter()
log_eval_metrics = EvalMetricsLogger()
for iteration, (img_keys, images, annotations) in enumerate(train_dataloader):
# gc.collect()
# torch.cuda.empty_cache()
Graphormer_model.train()
iteration += 1
epoch = iteration // iters_per_epoch
batch_size = images.size(0)
adjust_learning_rate(optimizer, epoch, args)
data_time.update(time.time() - end)
images = images.to(device)
gt_2d_joints = annotations['joints_2d'].to(device)
gt_2d_joints = gt_2d_joints[:,cfg.J24_TO_J14,:]
has_2d_joints = annotations['has_2d_joints'].to(device)
gt_3d_joints = annotations['joints_3d'].to(device)
gt_3d_pelvis = gt_3d_joints[:,cfg.J24_NAME.index('Pelvis'),:3]
gt_3d_joints = gt_3d_joints[:,cfg.J24_TO_J14,:]
gt_3d_joints[:,:,:3] = gt_3d_joints[:,:,:3] - gt_3d_pelvis[:, None, :]
has_3d_joints = annotations['has_3d_joints'].to(device)
gt_pose = annotations['pose'].to(device)
gt_betas = annotations['betas'].to(device)
has_smpl = annotations['has_smpl'].to(device)
mjm_mask = annotations['mjm_mask'].to(device)
mvm_mask = annotations['mvm_mask'].to(device)
# generate simplified mesh
gt_vertices = smpl(gt_pose, gt_betas)
gt_vertices_sub2 = mesh_sampler.downsample(gt_vertices, n1=0, n2=2)
gt_vertices_sub = mesh_sampler.downsample(gt_vertices)
# normalize gt based on smpl's pelvis
gt_smpl_3d_joints = smpl.get_h36m_joints(gt_vertices)
gt_smpl_3d_pelvis = gt_smpl_3d_joints[:,cfg.H36M_J17_NAME.index('Pelvis'),:]
gt_vertices_sub2 = gt_vertices_sub2 - gt_smpl_3d_pelvis[:, None, :]
# prepare masks for mask vertex/joint modeling
mjm_mask_ = mjm_mask.expand(-1,-1,2051)
mvm_mask_ = mvm_mask.expand(-1,-1,2051)
meta_masks = torch.cat([mjm_mask_, mvm_mask_], dim=1)
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub2, pred_vertices_sub, pred_vertices = Graphormer_model(images, smpl, mesh_sampler, meta_masks=meta_masks, is_train=True)
# normalize gt based on smpl's pelvis
gt_vertices_sub = gt_vertices_sub - gt_smpl_3d_pelvis[:, None, :]
gt_vertices = gt_vertices - gt_smpl_3d_pelvis[:, None, :]
# obtain 3d joints, which are regressed from the full mesh
pred_3d_joints_from_smpl = smpl.get_h36m_joints(pred_vertices)
pred_3d_joints_from_smpl = pred_3d_joints_from_smpl[:,cfg.H36M_J17_TO_J14,:]
# obtain 2d joints, which are projected from 3d joints of smpl mesh
pred_2d_joints_from_smpl = orthographic_projection(pred_3d_joints_from_smpl, pred_camera)
pred_2d_joints = orthographic_projection(pred_3d_joints, pred_camera)
# compute 3d joint loss (where the joints are directly output from transformer)
loss_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints, gt_3d_joints, has_3d_joints, args.device)
# compute 3d vertex loss
loss_vertices = ( args.vloss_w_sub2 * vertices_loss(criterion_vertices, pred_vertices_sub2, gt_vertices_sub2, has_smpl, args.device) + \
args.vloss_w_sub * vertices_loss(criterion_vertices, pred_vertices_sub, gt_vertices_sub, has_smpl, args.device) + \
args.vloss_w_full * vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl, args.device) )
# compute 3d joint loss (where the joints are regressed from full mesh)
loss_reg_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints_from_smpl, gt_3d_joints, has_3d_joints, args.device)
# compute 2d joint loss
loss_2d_joints = keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints, gt_2d_joints, has_2d_joints) + \
keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints_from_smpl, gt_2d_joints, has_2d_joints)
loss_3d_joints = loss_3d_joints + loss_reg_3d_joints
# we empirically use hyperparameters to balance difference losses
loss = args.joints_loss_weight*loss_3d_joints + \
args.vertices_loss_weight*loss_vertices + args.vertices_loss_weight*loss_2d_joints
# update logs
log_loss_2djoints.update(loss_2d_joints.item(), batch_size)
log_loss_3djoints.update(loss_3d_joints.item(), batch_size)
log_loss_vertices.update(loss_vertices.item(), batch_size)
log_losses.update(loss.item(), batch_size)
# back prop
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if iteration % args.logging_steps == 0 or iteration == max_iter:
eta_seconds = batch_time.avg * (max_iter - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
logger.info(
' '.join(
['eta: {eta}', 'epoch: {ep}', 'iter: {iter}', 'max mem : {memory:.0f}',]
).format(eta=eta_string, ep=epoch, iter=iteration,
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0)
+ ' loss: {:.4f}, 2d joint loss: {:.4f}, 3d joint loss: {:.4f}, vertex loss: {:.4f}, compute: {:.4f}, data: {:.4f}, lr: {:.6f}'.format(
log_losses.avg, log_loss_2djoints.avg, log_loss_3djoints.avg, log_loss_vertices.avg, batch_time.avg, data_time.avg,
optimizer.param_groups[0]['lr'])
)
aml_run.log(name='Loss', value=float(log_losses.avg))
aml_run.log(name='3d joint Loss', value=float(log_loss_3djoints.avg))
aml_run.log(name='2d joint Loss', value=float(log_loss_2djoints.avg))
aml_run.log(name='vertex Loss', value=float(log_loss_vertices.avg))
visual_imgs = visualize_mesh( renderer,
annotations['ori_img'].detach(),
annotations['joints_2d'].detach(),
pred_vertices.detach(),
pred_camera.detach(),
pred_2d_joints_from_smpl.detach())
visual_imgs = visual_imgs.transpose(0,1)
visual_imgs = visual_imgs.transpose(1,2)
visual_imgs = np.asarray(visual_imgs)
if is_main_process()==True:
stamp = str(epoch) + '_' + str(iteration)
temp_fname = args.output_dir + 'visual_' + stamp + '.jpg'
cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255))
aml_run.log_image(name='visual results', path=temp_fname)
if iteration % iters_per_epoch == 0:
val_mPVE, val_mPJPE, val_PAmPJPE, val_count = run_validate(args, val_dataloader,
Graphormer_model,
criterion_keypoints,
criterion_vertices,
epoch,
smpl,
mesh_sampler)
aml_run.log(name='mPVE', value=float(1000*val_mPVE))
aml_run.log(name='mPJPE', value=float(1000*val_mPJPE))
aml_run.log(name='PAmPJPE', value=float(1000*val_PAmPJPE))
logger.info(
' '.join(['Validation', 'epoch: {ep}',]).format(ep=epoch)
+ ' mPVE: {:6.2f}, mPJPE: {:6.2f}, PAmPJPE: {:6.2f}, Data Count: {:6.2f}'.format(1000*val_mPVE, 1000*val_mPJPE, 1000*val_PAmPJPE, val_count)
)
if val_PAmPJPE<log_eval_metrics.PAmPJPE:
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration)
log_eval_metrics.update(val_mPVE, val_mPJPE, val_PAmPJPE, epoch)
total_training_time = time.time() - start_training_time
total_time_str = str(datetime.timedelta(seconds=total_training_time))
logger.info('Total training time: {} ({:.4f} s / iter)'.format(
total_time_str, total_training_time / max_iter)
)
checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration)
logger.info(
' Best Results:'
+ ' mPVE: {:6.2f}, mPJPE: {:6.2f}, PAmPJPE: {:6.2f}, at epoch {:6.2f}'.format(1000*log_eval_metrics.mPVE, 1000*log_eval_metrics.mPJPE, 1000*log_eval_metrics.PAmPJPE, log_eval_metrics.epoch)
)
def run_eval_general(args, val_dataloader, Graphormer_model, smpl, mesh_sampler):
smpl.eval()
criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device)
criterion_vertices = torch.nn.L1Loss().to(device)
epoch = 0
if args.distributed:
Graphormer_model = torch.nn.parallel.DistributedDataParallel(
Graphormer_model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
Graphormer_model.eval()
val_mPVE, val_mPJPE, val_PAmPJPE, val_count = run_validate(args, val_dataloader,
Graphormer_model,
criterion_keypoints,
criterion_vertices,
epoch,
smpl,
mesh_sampler)
aml_run.log(name='mPVE', value=float(1000*val_mPVE))
aml_run.log(name='mPJPE', value=float(1000*val_mPJPE))
aml_run.log(name='PAmPJPE', value=float(1000*val_PAmPJPE))
logger.info(
' '.join(['Validation', 'epoch: {ep}',]).format(ep=epoch)
+ ' mPVE: {:6.2f}, mPJPE: {:6.2f}, PAmPJPE: {:6.2f} '.format(1000*val_mPVE, 1000*val_mPJPE, 1000*val_PAmPJPE)
)
# checkpoint_dir = save_checkpoint(Graphormer_model, args, 0, 0)
return
def run_validate(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, smpl, mesh_sampler):
batch_time = AverageMeter()
mPVE = AverageMeter()
mPJPE = AverageMeter()
PAmPJPE = AverageMeter()
# switch to evaluate mode
Graphormer_model.eval()
smpl.eval()
with torch.no_grad():
# end = time.time()
for i, (img_keys, images, annotations) in enumerate(val_loader):
batch_size = images.size(0)
# compute output
images = images.to(device)
gt_3d_joints = annotations['joints_3d'].to(device)
gt_3d_pelvis = gt_3d_joints[:,cfg.J24_NAME.index('Pelvis'),:3]
gt_3d_joints = gt_3d_joints[:,cfg.J24_TO_J14,:]
gt_3d_joints[:,:,:3] = gt_3d_joints[:,:,:3] - gt_3d_pelvis[:, None, :]
has_3d_joints = annotations['has_3d_joints'].to(device)
gt_pose = annotations['pose'].to(device)
gt_betas = annotations['betas'].to(device)
has_smpl = annotations['has_smpl'].to(device)
# generate simplified mesh
gt_vertices = smpl(gt_pose, gt_betas)
gt_vertices_sub = mesh_sampler.downsample(gt_vertices)
gt_vertices_sub2 = mesh_sampler.downsample(gt_vertices_sub, n1=1, n2=2)
# normalize gt based on smpl pelvis
gt_smpl_3d_joints = smpl.get_h36m_joints(gt_vertices)
gt_smpl_3d_pelvis = gt_smpl_3d_joints[:,cfg.H36M_J17_NAME.index('Pelvis'),:]
gt_vertices_sub2 = gt_vertices_sub2 - gt_smpl_3d_pelvis[:, None, :]
gt_vertices = gt_vertices - gt_smpl_3d_pelvis[:, None, :]
# forward-pass
pred_camera, pred_3d_joints, pred_vertices_sub2, pred_vertices_sub, pred_vertices = Graphormer_model(images, smpl, mesh_sampler)
# obtain 3d joints from full mesh
pred_3d_joints_from_smpl = smpl.get_h36m_joints(pred_vertices)
pred_3d_pelvis = pred_3d_joints_from_smpl[:,cfg.H36M_J17_NAME.index('Pelvis'),:]
pred_3d_joints_from_smpl = pred_3d_joints_from_smpl[:,cfg.H36M_J17_TO_J14,:]
pred_3d_joints_from_smpl = pred_3d_joints_from_smpl - pred_3d_pelvis[:, None, :]
pred_vertices = pred_vertices - pred_3d_pelvis[:, None, :]
# measure errors
error_vertices = mean_per_vertex_error(pred_vertices, gt_vertices, has_smpl)
error_joints = mean_per_joint_position_error(pred_3d_joints_from_smpl, gt_3d_joints, has_3d_joints)
error_joints_pa = reconstruction_error(pred_3d_joints_from_smpl.cpu().numpy(), gt_3d_joints[:,:,:3].cpu().numpy(), reduction=None)
if len(error_vertices)>0:
mPVE.update(np.mean(error_vertices), int(torch.sum(has_smpl)) )
if len(error_joints)>0:
mPJPE.update(np.mean(error_joints), int(torch.sum(has_3d_joints)) )
if len(error_joints_pa)>0:
PAmPJPE.update(np.mean(error_joints_pa), int(torch.sum(has_3d_joints)) )
val_mPVE = all_gather(float(mPVE.avg))
val_mPVE = sum(val_mPVE)/len(val_mPVE)
val_mPJPE = all_gather(float(mPJPE.avg))
val_mPJPE = sum(val_mPJPE)/len(val_mPJPE)
val_PAmPJPE = all_gather(float(PAmPJPE.avg))
val_PAmPJPE = sum(val_PAmPJPE)/len(val_PAmPJPE)
val_count = all_gather(float(mPVE.count))
val_count = sum(val_count)
return val_mPVE, val_mPJPE, val_PAmPJPE, val_count
def visualize_mesh( renderer,
images,
gt_keypoints_2d,
pred_vertices,
pred_camera,
pred_keypoints_2d):
"""Tensorboard logging."""
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy()
to_lsp = list(range(14))
rend_imgs = []
batch_size = pred_vertices.shape[0]
# Do visualization for the first 6 images of the batch
for i in range(min(batch_size, 10)):
img = images[i].cpu().numpy().transpose(1,2,0)
# Get LSP keypoints from the full list of keypoints
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp]
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp]
# Get predict vertices for the particular example
vertices = pred_vertices[i].cpu().numpy()
cam = pred_camera[i].cpu().numpy()
# Visualize reconstruction and detected pose
rend_img = visualize_reconstruction(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer)
rend_img = rend_img.transpose(2,0,1)
rend_imgs.append(torch.from_numpy(rend_img))
rend_imgs = make_grid(rend_imgs, nrow=1)
return rend_imgs
def visualize_mesh_test( renderer,
images,
gt_keypoints_2d,
pred_vertices,
pred_camera,
pred_keypoints_2d,
PAmPJPE_h36m_j14):
"""Tensorboard logging."""
gt_keypoints_2d = gt_keypoints_2d.cpu().numpy()
to_lsp = list(range(14))
rend_imgs = []
batch_size = pred_vertices.shape[0]
# Do visualization for the first 6 images of the batch
for i in range(min(batch_size, 10)):
img = images[i].cpu().numpy().transpose(1,2,0)
# Get LSP keypoints from the full list of keypoints
gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp]
pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp]
# Get predict vertices for the particular example
vertices = pred_vertices[i].cpu().numpy()
cam = pred_camera[i].cpu().numpy()
score = PAmPJPE_h36m_j14[i]
# Visualize reconstruction and detected pose
rend_img = visualize_reconstruction_test(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer, score)
rend_img = rend_img.transpose(2,0,1)
rend_imgs.append(torch.from_numpy(rend_img))
rend_imgs = make_grid(rend_imgs, nrow=1)
return rend_imgs
def parse_args():
parser = argparse.ArgumentParser()
#########################################################
# Data related arguments
#########################################################
parser.add_argument("--data_dir", default='datasets', type=str, required=False,
help="Directory with all datasets, each in one subfolder")
parser.add_argument("--train_yaml", default='imagenet2012/train.yaml', type=str, required=False,
help="Yaml file with all data for training.")
parser.add_argument("--val_yaml", default='imagenet2012/test.yaml', type=str, required=False,
help="Yaml file with all data for validation.")
parser.add_argument("--num_workers", default=4, type=int,
help="Workers in dataloader.")
parser.add_argument("--img_scale_factor", default=1, type=int,
help="adjust image resolution.")
#########################################################
# Loading/saving checkpoints
#########################################################
parser.add_argument("--model_name_or_path", default='src/modeling/bert/bert-base-uncased/', type=str, required=False,
help="Path to pre-trained transformer model or model type.")
parser.add_argument("--resume_checkpoint", default=None, type=str, required=False,
help="Path to specific checkpoint for resume training.")
parser.add_argument("--output_dir", default='output/', type=str, required=False,
help="The output directory to save checkpoint and test results.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name.")
#########################################################
# Training parameters
#########################################################
parser.add_argument("--per_gpu_train_batch_size", default=30, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=30, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--lr', "--learning_rate", default=1e-4, type=float,
help="The initial lr.")
parser.add_argument("--num_train_epochs", default=200, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--vertices_loss_weight", default=100.0, type=float)
parser.add_argument("--joints_loss_weight", default=1000.0, type=float)
parser.add_argument("--vloss_w_full", default=0.33, type=float)
parser.add_argument("--vloss_w_sub", default=0.33, type=float)
parser.add_argument("--vloss_w_sub2", default=0.33, type=float)
parser.add_argument("--drop_out", default=0.1, type=float,
help="Drop out ratio in BERT.")
#########################################################
# Model architectures
#########################################################
parser.add_argument('-a', '--arch', default='hrnet-w64',
help='CNN backbone architecture: hrnet-w64, hrnet, resnet50')
parser.add_argument("--num_hidden_layers", default=4, type=int, required=False,
help="Update model config if given")
parser.add_argument("--hidden_size", default=-1, type=int, required=False,
help="Update model config if given")
parser.add_argument("--num_attention_heads", default=4, type=int, required=False,
help="Update model config if given. Note that the division of "
"hidden_size / num_attention_heads should be in integer.")
parser.add_argument("--intermediate_size", default=-1, type=int, required=False,
help="Update model config if given.")
parser.add_argument("--input_feat_dim", default='2051,512,128', type=str,
help="The Image Feature Dimension.")
parser.add_argument("--hidden_feat_dim", default='1024,256,64', type=str,
help="The Image Feature Dimension.")
parser.add_argument("--which_gcn", default='0,0,1', type=str,
help="which encoder block to have graph conv. Encoder1, Encoder2, Encoder3. Default: only Encoder3 has graph conv")
parser.add_argument("--mesh_type", default='body', type=str, help="body or hand")
parser.add_argument("--interm_size_scale", default=2, type=int)
#########################################################
# Others
#########################################################
parser.add_argument("--run_eval_only", default=False, action='store_true',)
parser.add_argument('--logging_steps', type=int, default=1000,
help="Log every X steps.")
parser.add_argument("--device", type=str, default='cuda',
help="cuda or cpu")
parser.add_argument('--seed', type=int, default=88,
help="random seed for initialization.")
parser.add_argument("--local_rank", type=int, default=0,
help="For distributed training.")
args = parser.parse_args()
return args
def main(args):
global logger
# Setup CUDA, GPU & distributed training
args.num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
os.environ['OMP_NUM_THREADS'] = str(args.num_workers)
print('set os.environ[OMP_NUM_THREADS] to {}'.format(os.environ['OMP_NUM_THREADS']))
args.distributed = args.num_gpus > 1
args.device = torch.device(args.device)
if args.distributed:
print("Init distributed training on local rank {} ({}), rank {}, world size {}".format(args.local_rank, int(os.environ["LOCAL_RANK"]), int(os.environ["NODE_RANK"]), args.num_gpus))
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend='nccl', init_method='env://'
)
local_rank = int(os.environ["LOCAL_RANK"])
args.device = torch.device("cuda", local_rank)
synchronize()
mkdir(args.output_dir)
logger = setup_logger("Graphormer", args.output_dir, get_rank())
set_seed(args.seed, args.num_gpus)
logger.info("Using {} GPUs".format(args.num_gpus))
# Mesh and SMPL utils
smpl = SMPL().to(args.device)
mesh_sampler = Mesh()
# Renderer for visualization
renderer = Renderer(faces=smpl.faces.cpu().numpy())
# Load model
trans_encoder = []
input_feat_dim = [int(item) for item in args.input_feat_dim.split(',')]
hidden_feat_dim = [int(item) for item in args.hidden_feat_dim.split(',')]
output_feat_dim = input_feat_dim[1:] + [3]
# which encoder block to have graph convs
which_blk_graph = [int(item) for item in args.which_gcn.split(',')]
if args.run_eval_only==True and args.resume_checkpoint!=None and args.resume_checkpoint!='None' and 'state_dict' not in args.resume_checkpoint:
# if only run eval, load checkpoint
logger.info("Evaluation: Loading from checkpoint {}".format(args.resume_checkpoint))
_model = torch.load(args.resume_checkpoint)
else:
# init three transformer-encoder blocks in a loop
for i in range(len(output_feat_dim)):
config_class, model_class = BertConfig, Graphormer
config = config_class.from_pretrained(args.config_name if args.config_name \
else args.model_name_or_path)
config.output_attentions = False
config.hidden_dropout_prob = args.drop_out
config.img_feature_dim = input_feat_dim[i]
config.output_feature_dim = output_feat_dim[i]
args.hidden_size = hidden_feat_dim[i]
args.intermediate_size = int(args.hidden_size*args.interm_size_scale)
if which_blk_graph[i]==1:
config.graph_conv = True
logger.info("Add Graph Conv")
else:
config.graph_conv = False
config.mesh_type = args.mesh_type
# update model structure if specified in arguments
update_params = ['num_hidden_layers', 'hidden_size', 'num_attention_heads', 'intermediate_size']
for idx, param in enumerate(update_params):
arg_param = getattr(args, param)
config_param = getattr(config, param)
if arg_param > 0 and arg_param != config_param:
logger.info("Update config parameter {}: {} -> {}".format(param, config_param, arg_param))
setattr(config, param, arg_param)
# init a transformer encoder and append it to a list
assert config.hidden_size % config.num_attention_heads == 0
model = model_class(config=config)
logger.info("Init model from scratch.")
trans_encoder.append(model)
# init ImageNet pre-trained backbone model
if args.arch=='hrnet':
hrnet_yaml = 'models/hrnet/cls_hrnet_w40_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = 'models/hrnet/hrnetv2_w40_imagenet_pretrained.pth'
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
logger.info('=> loading hrnet-v2-w40 model')
elif args.arch=='hrnet-w64':
hrnet_yaml = 'models/hrnet/cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
hrnet_checkpoint = 'models/hrnet/hrnetv2_w64_imagenet_pretrained.pth'
hrnet_update_config(hrnet_config, hrnet_yaml)
backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
logger.info('=> loading hrnet-v2-w64 model')
else:
print("=> using pre-trained model '{}'".format(args.arch))
backbone = models.__dict__[args.arch](pretrained=True)
# remove the last fc layer
backbone = torch.nn.Sequential(*list(backbone.children())[:-2])
trans_encoder = torch.nn.Sequential(*trans_encoder)
total_params = sum(p.numel() for p in trans_encoder.parameters())
logger.info('Graphormer encoders total parameters: {}'.format(total_params))
backbone_total_params = sum(p.numel() for p in backbone.parameters())
logger.info('Backbone total parameters: {}'.format(backbone_total_params))
# build end-to-end Graphormer network (CNN backbone + multi-layer graphormer encoder)
_model = Graphormer_Network(args, config, backbone, trans_encoder, mesh_sampler)
if args.resume_checkpoint!=None and args.resume_checkpoint!='None':
# for fine-tuning or resume training or inference, load weights from checkpoint
logger.info("Loading state dict from checkpoint {}".format(args.resume_checkpoint))
# workaround approach to load sparse tensor in graph conv.
states = torch.load(args.resume_checkpoint)
# states = checkpoint_loaded.state_dict()
for k, v in states.items():
states[k] = v.cpu()
# del checkpoint_loaded
_model.load_state_dict(states, strict=False)
del states
gc.collect()
torch.cuda.empty_cache()
_model.to(args.device)
logger.info("Training parameters %s", args)
if args.run_eval_only==True:
val_dataloader = make_data_loader(args, args.val_yaml,
args.distributed, is_train=False, scale_factor=args.img_scale_factor)
run_eval_general(args, val_dataloader, _model, smpl, mesh_sampler)
else:
train_dataloader = make_data_loader(args, args.train_yaml,
args.distributed, is_train=True, scale_factor=args.img_scale_factor)
val_dataloader = make_data_loader(args, args.val_yaml,
args.distributed, is_train=False, scale_factor=args.img_scale_factor)
run(args, train_dataloader, val_dataloader, _model, smpl, mesh_sampler, renderer)
if __name__ == "__main__":
args = parse_args()
main(args)
|