File size: 35,019 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.

Training and evaluation codes for 
3D hand mesh reconstruction from an image
"""

from __future__ import absolute_import, division, print_function
import argparse
import os
import os.path as op
import code
import json
import time
import datetime
import torch
import torchvision.models as models
from torchvision.utils import make_grid
import gc
import numpy as np
import cv2
from custom_mesh_graphormer.modeling.bert import BertConfig, Graphormer
from custom_mesh_graphormer.modeling.bert import Graphormer_Hand_Network as Graphormer_Network
from custom_mesh_graphormer.modeling._mano import MANO, Mesh
from custom_mesh_graphormer.modeling.hrnet.hrnet_cls_net_gridfeat import get_cls_net_gridfeat
from custom_mesh_graphormer.modeling.hrnet.config import config as hrnet_config
from custom_mesh_graphormer.modeling.hrnet.config import update_config as hrnet_update_config
import custom_mesh_graphormer.modeling.data.config as cfg
from custom_mesh_graphormer.datasets.build import make_hand_data_loader

from custom_mesh_graphormer.utils.logger import setup_logger
from custom_mesh_graphormer.utils.comm import synchronize, is_main_process, get_rank, get_world_size, all_gather
from custom_mesh_graphormer.utils.miscellaneous import mkdir, set_seed
from custom_mesh_graphormer.utils.metric_logger import AverageMeter
from custom_mesh_graphormer.utils.renderer import Renderer, visualize_reconstruction, visualize_reconstruction_test, visualize_reconstruction_no_text
from custom_mesh_graphormer.utils.metric_pampjpe import reconstruction_error
from custom_mesh_graphormer.utils.geometric_layers import orthographic_projection

from comfy.model_management import get_torch_device
device = get_torch_device()

from azureml.core.run import Run
aml_run = Run.get_context()

def save_checkpoint(model, args, epoch, iteration, num_trial=10):
    checkpoint_dir = op.join(args.output_dir, 'checkpoint-{}-{}'.format(
        epoch, iteration))
    if not is_main_process():
        return checkpoint_dir
    mkdir(checkpoint_dir)
    model_to_save = model.module if hasattr(model, 'module') else model
    for i in range(num_trial):
        try:
            torch.save(model_to_save, op.join(checkpoint_dir, 'model.bin'))
            torch.save(model_to_save.state_dict(), op.join(checkpoint_dir, 'state_dict.bin'))
            torch.save(args, op.join(checkpoint_dir, 'training_args.bin'))
            logger.info("Save checkpoint to {}".format(checkpoint_dir))
            break
        except:
            pass
    else:
        logger.info("Failed to save checkpoint after {} trails.".format(num_trial))
    return checkpoint_dir

def adjust_learning_rate(optimizer, epoch, args):
    """
    Sets the learning rate to the initial LR decayed by x every y epochs
    x = 0.1, y = args.num_train_epochs/2.0 = 100
    """
    lr = args.lr * (0.1 ** (epoch // (args.num_train_epochs/2.0)  ))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

def keypoint_2d_loss(criterion_keypoints, pred_keypoints_2d, gt_keypoints_2d, has_pose_2d):
    """
    Compute 2D reprojection loss if 2D keypoint annotations are available.
    The confidence is binary and indicates whether the keypoints exist or not.
    """
    conf = gt_keypoints_2d[:, :, -1].unsqueeze(-1).clone()
    loss = (conf * criterion_keypoints(pred_keypoints_2d, gt_keypoints_2d[:, :, :-1])).mean()
    return loss

def keypoint_3d_loss(criterion_keypoints, pred_keypoints_3d, gt_keypoints_3d, has_pose_3d):
    """
    Compute 3D keypoint loss if 3D keypoint annotations are available.
    """
    conf = gt_keypoints_3d[:, :, -1].unsqueeze(-1).clone()
    gt_keypoints_3d = gt_keypoints_3d[:, :, :-1].clone()
    gt_keypoints_3d = gt_keypoints_3d[has_pose_3d == 1]
    conf = conf[has_pose_3d == 1]
    pred_keypoints_3d = pred_keypoints_3d[has_pose_3d == 1]
    if len(gt_keypoints_3d) > 0:
        gt_root = gt_keypoints_3d[:, 0,:]
        gt_keypoints_3d = gt_keypoints_3d - gt_root[:, None, :]
        pred_root = pred_keypoints_3d[:, 0,:]
        pred_keypoints_3d = pred_keypoints_3d - pred_root[:, None, :]
        return (conf * criterion_keypoints(pred_keypoints_3d, gt_keypoints_3d)).mean()
    else:
        return torch.FloatTensor(1).fill_(0.).to(device)

def vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl):
    """
    Compute per-vertex loss if vertex annotations are available.
    """
    pred_vertices_with_shape = pred_vertices[has_smpl == 1]
    gt_vertices_with_shape = gt_vertices[has_smpl == 1]
    if len(gt_vertices_with_shape) > 0:
        return criterion_vertices(pred_vertices_with_shape, gt_vertices_with_shape)
    else:
        return torch.FloatTensor(1).fill_(0.).to(device)
    

def run(args, train_dataloader, Graphormer_model, mano_model, renderer, mesh_sampler):

    max_iter = len(train_dataloader)
    iters_per_epoch = max_iter // args.num_train_epochs

    optimizer = torch.optim.Adam(params=list(Graphormer_model.parameters()),
                                           lr=args.lr,
                                           betas=(0.9, 0.999),
                                           weight_decay=0)

    # define loss function (criterion) and optimizer
    criterion_2d_keypoints = torch.nn.MSELoss(reduction='none').to(device)
    criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device)
    criterion_vertices = torch.nn.L1Loss().to(device)

    if args.distributed:
        Graphormer_model = torch.nn.parallel.DistributedDataParallel(
            Graphormer_model, device_ids=[args.local_rank], 
            output_device=args.local_rank,
            find_unused_parameters=True,
        )

    start_training_time = time.time()
    end = time.time()
    Graphormer_model.train()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    log_losses = AverageMeter()
    log_loss_2djoints = AverageMeter()
    log_loss_3djoints = AverageMeter()
    log_loss_vertices = AverageMeter()

    for iteration, (img_keys, images, annotations) in enumerate(train_dataloader):

        Graphormer_model.train()
        iteration += 1
        epoch = iteration // iters_per_epoch
        batch_size = images.size(0)
        adjust_learning_rate(optimizer, epoch, args)
        data_time.update(time.time() - end)

        images = images.to(device)
        gt_2d_joints = annotations['joints_2d'].to(device)
        gt_pose = annotations['pose'].to(device)
        gt_betas = annotations['betas'].to(device)
        has_mesh = annotations['has_smpl'].to(device)
        has_3d_joints = has_mesh
        has_2d_joints = has_mesh
        mjm_mask = annotations['mjm_mask'].to(device)
        mvm_mask = annotations['mvm_mask'].to(device)

        # generate mesh
        gt_vertices, gt_3d_joints = mano_model.layer(gt_pose, gt_betas)
        gt_vertices = gt_vertices/1000.0
        gt_3d_joints = gt_3d_joints/1000.0

        gt_vertices_sub = mesh_sampler.downsample(gt_vertices)
        # normalize gt based on hand's wrist 
        gt_3d_root = gt_3d_joints[:,cfg.J_NAME.index('Wrist'),:]
        gt_vertices = gt_vertices - gt_3d_root[:, None, :]
        gt_vertices_sub = gt_vertices_sub - gt_3d_root[:, None, :]
        gt_3d_joints = gt_3d_joints - gt_3d_root[:, None, :]
        gt_3d_joints_with_tag = torch.ones((batch_size,gt_3d_joints.shape[1],4)).to(device)
        gt_3d_joints_with_tag[:,:,:3] = gt_3d_joints

        # prepare masks for mask vertex/joint modeling
        mjm_mask_ = mjm_mask.expand(-1,-1,2051)
        mvm_mask_ = mvm_mask.expand(-1,-1,2051)
        meta_masks = torch.cat([mjm_mask_, mvm_mask_], dim=1)
        
        # forward-pass
        pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler, meta_masks=meta_masks, is_train=True)

        # obtain 3d joints, which are regressed from the full mesh
        pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)

        # obtain 2d joints, which are projected from 3d joints of smpl mesh
        pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous())
        pred_2d_joints = orthographic_projection(pred_3d_joints.contiguous(), pred_camera.contiguous())
        
        # compute 3d joint loss  (where the joints are directly output from transformer)
        loss_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints, gt_3d_joints_with_tag, has_3d_joints)

        # compute 3d vertex loss
        loss_vertices = ( args.vloss_w_sub * vertices_loss(criterion_vertices, pred_vertices_sub, gt_vertices_sub, has_mesh) + \
                            args.vloss_w_full * vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_mesh) )

        # compute 3d joint loss (where the joints are regressed from full mesh)
        loss_reg_3d_joints = keypoint_3d_loss(criterion_keypoints, pred_3d_joints_from_mesh, gt_3d_joints_with_tag, has_3d_joints)
        # compute 2d joint loss
        loss_2d_joints = keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints, gt_2d_joints, has_2d_joints)  + \
                         keypoint_2d_loss(criterion_2d_keypoints, pred_2d_joints_from_mesh, gt_2d_joints, has_2d_joints)
        
        loss_3d_joints = loss_3d_joints + loss_reg_3d_joints
            
        # we empirically use hyperparameters to balance difference losses
        loss = args.joints_loss_weight*loss_3d_joints + \
                args.vertices_loss_weight*loss_vertices  + args.vertices_loss_weight*loss_2d_joints

        # update logs
        log_loss_2djoints.update(loss_2d_joints.item(), batch_size)
        log_loss_3djoints.update(loss_3d_joints.item(), batch_size)
        log_loss_vertices.update(loss_vertices.item(), batch_size)
        log_losses.update(loss.item(), batch_size)

        # back prop
        optimizer.zero_grad()
        loss.backward() 
        optimizer.step()

        batch_time.update(time.time() - end)
        end = time.time()

        if iteration % args.logging_steps == 0 or iteration == max_iter:
            eta_seconds = batch_time.avg * (max_iter - iteration)
            eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
            logger.info(
                ' '.join(
                ['eta: {eta}', 'epoch: {ep}', 'iter: {iter}', 'max mem : {memory:.0f}',]
                ).format(eta=eta_string, ep=epoch, iter=iteration, 
                    memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0) 
                + '  loss: {:.4f}, 2d joint loss: {:.4f}, 3d joint loss: {:.4f}, vertex loss: {:.4f}, compute: {:.4f}, data: {:.4f}, lr: {:.6f}'.format(
                    log_losses.avg, log_loss_2djoints.avg, log_loss_3djoints.avg, log_loss_vertices.avg, batch_time.avg, data_time.avg, 
                    optimizer.param_groups[0]['lr'])
            )

            aml_run.log(name='Loss', value=float(log_losses.avg))
            aml_run.log(name='3d joint Loss', value=float(log_loss_3djoints.avg))
            aml_run.log(name='2d joint Loss', value=float(log_loss_2djoints.avg))
            aml_run.log(name='vertex Loss', value=float(log_loss_vertices.avg))

            visual_imgs = visualize_mesh(   renderer,
                                            annotations['ori_img'].detach(),
                                            annotations['joints_2d'].detach(),
                                            pred_vertices.detach(), 
                                            pred_camera.detach(),
                                            pred_2d_joints_from_mesh.detach())
            visual_imgs = visual_imgs.transpose(0,1)
            visual_imgs = visual_imgs.transpose(1,2)
            visual_imgs = np.asarray(visual_imgs)

            if is_main_process()==True:
                stamp = str(epoch) + '_' + str(iteration)
                temp_fname = args.output_dir + 'visual_' + stamp + '.jpg'
                cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255))
                aml_run.log_image(name='visual results', path=temp_fname)

        if iteration % iters_per_epoch == 0:
            if epoch%10==0:
                checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration)

    total_training_time = time.time() - start_training_time
    total_time_str = str(datetime.timedelta(seconds=total_training_time))
    logger.info('Total training time: {} ({:.4f} s / iter)'.format(
        total_time_str, total_training_time / max_iter)
    )
    checkpoint_dir = save_checkpoint(Graphormer_model, args, epoch, iteration)

def run_eval_and_save(args, split, val_dataloader, Graphormer_model, mano_model, renderer, mesh_sampler):

    criterion_keypoints = torch.nn.MSELoss(reduction='none').to(device)
    criterion_vertices = torch.nn.L1Loss().to(device)

    if args.distributed:
        Graphormer_model = torch.nn.parallel.DistributedDataParallel(
            Graphormer_model, device_ids=[args.local_rank], 
            output_device=args.local_rank,
            find_unused_parameters=True,
        )
    Graphormer_model.eval()

    if args.aml_eval==True:
        run_aml_inference_hand_mesh(args, val_dataloader, 
                                Graphormer_model, 
                                criterion_keypoints, 
                                criterion_vertices, 
                                0, 
                                mano_model, mesh_sampler,
                                renderer, split)
    else:
        run_inference_hand_mesh(args, val_dataloader, 
                                Graphormer_model, 
                                criterion_keypoints, 
                                criterion_vertices, 
                                0, 
                                mano_model, mesh_sampler,
                                renderer, split)
    checkpoint_dir = save_checkpoint(Graphormer_model, args, 0, 0)
    return

def run_aml_inference_hand_mesh(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, mano_model, mesh_sampler, renderer, split):
    # switch to evaluate mode
    Graphormer_model.eval()
    fname_output_save = []
    mesh_output_save = []
    joint_output_save = []
    world_size = get_world_size()
    with torch.no_grad():
        for i, (img_keys, images, annotations) in enumerate(val_loader):
            batch_size = images.size(0)
            # compute output
            images = images.to(device)
            
            # forward-pass
            pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler)
            # obtain 3d joints from full mesh
            pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)

            for j in range(batch_size):
                fname_output_save.append(img_keys[j])
                pred_vertices_list = pred_vertices[j].tolist()
                mesh_output_save.append(pred_vertices_list)
                pred_3d_joints_from_mesh_list = pred_3d_joints_from_mesh[j].tolist()
                joint_output_save.append(pred_3d_joints_from_mesh_list)

    if world_size > 1:
        torch.distributed.barrier()
    print('save results to pred.json')
    output_json_file = 'pred.json'
    print('save results to ', output_json_file)
    with open(output_json_file, 'w') as f:
        json.dump([joint_output_save, mesh_output_save], f)

    azure_ckpt_name = '200' # args.resume_checkpoint.split('/')[-2].split('-')[1]
    inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot)))
    output_zip_file = args.output_dir + 'ckpt' + azure_ckpt_name + '-' + inference_setting +'-pred.zip'

    resolved_submit_cmd = 'zip ' + output_zip_file + ' ' + output_json_file
    print(resolved_submit_cmd)
    os.system(resolved_submit_cmd)
    resolved_submit_cmd = 'rm %s'%(output_json_file)
    print(resolved_submit_cmd)
    os.system(resolved_submit_cmd)
    if world_size > 1:
        torch.distributed.barrier()

    return 

def run_inference_hand_mesh(args, val_loader, Graphormer_model, criterion, criterion_vertices, epoch, mano_model, mesh_sampler, renderer, split):
    # switch to evaluate mode
    Graphormer_model.eval()
    fname_output_save = []
    mesh_output_save = []
    joint_output_save = []
    with torch.no_grad():
        for i, (img_keys, images, annotations) in enumerate(val_loader):
            batch_size = images.size(0)
            # compute output
            images = images.to(device)

            # forward-pass
            pred_camera, pred_3d_joints, pred_vertices_sub, pred_vertices = Graphormer_model(images, mano_model, mesh_sampler)

            # obtain 3d joints from full mesh
            pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)
            pred_3d_pelvis = pred_3d_joints_from_mesh[:,cfg.J_NAME.index('Wrist'),:]
            pred_3d_joints_from_mesh = pred_3d_joints_from_mesh - pred_3d_pelvis[:, None, :]
            pred_vertices = pred_vertices - pred_3d_pelvis[:, None, :]

            for j in range(batch_size):
                fname_output_save.append(img_keys[j])
                pred_vertices_list = pred_vertices[j].tolist()
                mesh_output_save.append(pred_vertices_list)
                pred_3d_joints_from_mesh_list = pred_3d_joints_from_mesh[j].tolist()
                joint_output_save.append(pred_3d_joints_from_mesh_list)

            if i%20==0:
                # obtain 3d joints, which are regressed from the full mesh
                pred_3d_joints_from_mesh = mano_model.get_3d_joints(pred_vertices)
                # obtain 2d joints, which are projected from 3d joints of mesh
                pred_2d_joints_from_mesh = orthographic_projection(pred_3d_joints_from_mesh.contiguous(), pred_camera.contiguous())
                visual_imgs = visualize_mesh(   renderer,
                                                annotations['ori_img'].detach(),
                                                annotations['joints_2d'].detach(),
                                                pred_vertices.detach(), 
                                                pred_camera.detach(),
                                                pred_2d_joints_from_mesh.detach())

                visual_imgs = visual_imgs.transpose(0,1)
                visual_imgs = visual_imgs.transpose(1,2)
                visual_imgs = np.asarray(visual_imgs)
                
                inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot)))
                temp_fname = args.output_dir + args.resume_checkpoint[0:-9] + 'freihand_results_'+inference_setting+'_batch'+str(i)+'.jpg'
                cv2.imwrite(temp_fname, np.asarray(visual_imgs[:,:,::-1]*255))

    print('save results to pred.json')
    with open('pred.json', 'w') as f:
        json.dump([joint_output_save, mesh_output_save], f)

    run_exp_name = args.resume_checkpoint.split('/')[-3]
    run_ckpt_name = args.resume_checkpoint.split('/')[-2].split('-')[1]
    inference_setting = 'sc%02d_rot%s'%(int(args.sc*10),str(int(args.rot)))
    resolved_submit_cmd = 'zip ' + args.output_dir + run_exp_name + '-ckpt'+ run_ckpt_name + '-' + inference_setting +'-pred.zip  ' +  'pred.json'
    print(resolved_submit_cmd)
    os.system(resolved_submit_cmd)
    resolved_submit_cmd = 'rm pred.json'
    print(resolved_submit_cmd)
    os.system(resolved_submit_cmd)
    return 

def visualize_mesh( renderer,
                    images,
                    gt_keypoints_2d,
                    pred_vertices, 
                    pred_camera,
                    pred_keypoints_2d):
    """Tensorboard logging."""
    gt_keypoints_2d = gt_keypoints_2d.cpu().numpy()
    to_lsp = list(range(21))
    rend_imgs = []
    batch_size = pred_vertices.shape[0]
    # Do visualization for the first 6 images of the batch
    for i in range(min(batch_size, 10)):
        img = images[i].cpu().numpy().transpose(1,2,0)
        # Get LSP keypoints from the full list of keypoints
        gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp]
        pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp]
        # Get predict vertices for the particular example
        vertices = pred_vertices[i].cpu().numpy()
        cam = pred_camera[i].cpu().numpy()
        # Visualize reconstruction and detected pose
        rend_img = visualize_reconstruction(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer)
        rend_img = rend_img.transpose(2,0,1)
        rend_imgs.append(torch.from_numpy(rend_img))   
    rend_imgs = make_grid(rend_imgs, nrow=1)
    return rend_imgs

def visualize_mesh_test( renderer,
                    images,
                    gt_keypoints_2d,
                    pred_vertices, 
                    pred_camera,
                    pred_keypoints_2d,
                    PAmPJPE):
    """Tensorboard logging."""
    gt_keypoints_2d = gt_keypoints_2d.cpu().numpy()
    to_lsp = list(range(21))
    rend_imgs = []
    batch_size = pred_vertices.shape[0]
    # Do visualization for the first 6 images of the batch
    for i in range(min(batch_size, 10)):
        img = images[i].cpu().numpy().transpose(1,2,0)
        # Get LSP keypoints from the full list of keypoints
        gt_keypoints_2d_ = gt_keypoints_2d[i, to_lsp]
        pred_keypoints_2d_ = pred_keypoints_2d.cpu().numpy()[i, to_lsp]
        # Get predict vertices for the particular example
        vertices = pred_vertices[i].cpu().numpy()
        cam = pred_camera[i].cpu().numpy()
        score = PAmPJPE[i]
        # Visualize reconstruction and detected pose
        rend_img = visualize_reconstruction_test(img, 224, gt_keypoints_2d_, vertices, pred_keypoints_2d_, cam, renderer, score)
        rend_img = rend_img.transpose(2,0,1)
        rend_imgs.append(torch.from_numpy(rend_img))   
    rend_imgs = make_grid(rend_imgs, nrow=1)
    return rend_imgs

def visualize_mesh_no_text( renderer,
                    images,
                    pred_vertices, 
                    pred_camera):
    """Tensorboard logging."""
    rend_imgs = []
    batch_size = pred_vertices.shape[0]
    # Do visualization for the first 6 images of the batch
    for i in range(min(batch_size, 1)):
        img = images[i].cpu().numpy().transpose(1,2,0)
        # Get predict vertices for the particular example
        vertices = pred_vertices[i].cpu().numpy()
        cam = pred_camera[i].cpu().numpy()
        # Visualize reconstruction only
        rend_img = visualize_reconstruction_no_text(img, 224, vertices, cam, renderer, color='hand')
        rend_img = rend_img.transpose(2,0,1)
        rend_imgs.append(torch.from_numpy(rend_img))   
    rend_imgs = make_grid(rend_imgs, nrow=1)
    return rend_imgs

def parse_args():
    parser = argparse.ArgumentParser()
    #########################################################
    # Data related arguments
    #########################################################
    parser.add_argument("--data_dir", default='datasets', type=str, required=False,
                        help="Directory with all datasets, each in one subfolder")
    parser.add_argument("--train_yaml", default='imagenet2012/train.yaml', type=str, required=False,
                        help="Yaml file with all data for training.")
    parser.add_argument("--val_yaml", default='imagenet2012/test.yaml', type=str, required=False,
                        help="Yaml file with all data for validation.")
    parser.add_argument("--num_workers", default=4, type=int, 
                        help="Workers in dataloader.")       
    parser.add_argument("--img_scale_factor", default=1, type=int, 
                        help="adjust image resolution.")  
    #########################################################
    # Loading/saving checkpoints
    #########################################################
    parser.add_argument("--model_name_or_path", default='src/modeling/bert/bert-base-uncased/', type=str, required=False,
                        help="Path to pre-trained transformer model or model type.")
    parser.add_argument("--resume_checkpoint", default=None, type=str, required=False,
                        help="Path to specific checkpoint for resume training.")
    parser.add_argument("--output_dir", default='output/', type=str, required=False,
                        help="The output directory to save checkpoint and test results.")
    parser.add_argument("--config_name", default="", type=str, 
                        help="Pretrained config name or path if not the same as model_name.")
    parser.add_argument('-a', '--arch', default='hrnet-w64',
                    help='CNN backbone architecture: hrnet-w64, hrnet, resnet50')
    #########################################################
    # Training parameters
    #########################################################
    parser.add_argument("--per_gpu_train_batch_size", default=64, type=int, 
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=64, type=int, 
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--lr', "--learning_rate", default=1e-4, type=float, 
                        help="The initial lr.")
    parser.add_argument("--num_train_epochs", default=200, type=int, 
                        help="Total number of training epochs to perform.")
    parser.add_argument("--vertices_loss_weight", default=1.0, type=float)          
    parser.add_argument("--joints_loss_weight", default=1.0, type=float)
    parser.add_argument("--vloss_w_full", default=0.5, type=float) 
    parser.add_argument("--vloss_w_sub", default=0.5, type=float)  
    parser.add_argument("--drop_out", default=0.1, type=float, 
                        help="Drop out ratio in BERT.")
    #########################################################
    # Model architectures
    #########################################################
    parser.add_argument("--num_hidden_layers", default=-1, type=int, required=False, 
                        help="Update model config if given")
    parser.add_argument("--hidden_size", default=-1, type=int, required=False, 
                        help="Update model config if given")
    parser.add_argument("--num_attention_heads", default=-1, type=int, required=False, 
                        help="Update model config if given. Note that the division of "
                        "hidden_size / num_attention_heads should be in integer.")
    parser.add_argument("--intermediate_size", default=-1, type=int, required=False, 
                        help="Update model config if given.")
    parser.add_argument("--input_feat_dim", default='2051,512,128', type=str, 
                        help="The Image Feature Dimension.")          
    parser.add_argument("--hidden_feat_dim", default='1024,256,64', type=str, 
                        help="The Image Feature Dimension.")  
    parser.add_argument("--which_gcn", default='0,0,1', type=str, 
                        help="which encoder block to have graph conv. Encoder1, Encoder2, Encoder3. Default: only Encoder3 has graph conv") 
    parser.add_argument("--mesh_type", default='hand', type=str, help="body or hand") 

    #########################################################
    # Others
    #########################################################
    parser.add_argument("--run_eval_only", default=False, action='store_true',) 
    parser.add_argument("--multiscale_inference", default=False, action='store_true',) 
    # if enable "multiscale_inference", dataloader will apply transformations to the test image based on
    # the rotation "rot" and scale "sc" parameters below 
    parser.add_argument("--rot", default=0, type=float) 
    parser.add_argument("--sc", default=1.0, type=float) 
    parser.add_argument("--aml_eval", default=False, action='store_true',) 

    parser.add_argument('--logging_steps', type=int, default=100, 
                        help="Log every X steps.")
    parser.add_argument("--device", type=str, default='cuda', 
                        help="cuda or cpu")
    parser.add_argument('--seed', type=int, default=88, 
                        help="random seed for initialization.")
    parser.add_argument("--local_rank", type=int, default=0, 
                        help="For distributed training.")
    args = parser.parse_args()
    return args

def main(args):
    global logger
    # Setup CUDA, GPU & distributed training
    args.num_gpus = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
    os.environ['OMP_NUM_THREADS'] = str(args.num_workers)
    print('set os.environ[OMP_NUM_THREADS] to {}'.format(os.environ['OMP_NUM_THREADS']))
    
    args.distributed = args.num_gpus > 1
    args.device = torch.device(args.device)
    if args.distributed:
        print("Init distributed training on local rank {}".format(args.local_rank))
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(
            backend='nccl', init_method='env://'
        )
        synchronize()
   
    mkdir(args.output_dir)
    logger = setup_logger("Graphormer", args.output_dir, get_rank())
    set_seed(args.seed, args.num_gpus)
    logger.info("Using {} GPUs".format(args.num_gpus))

    # Mesh and SMPL utils
    mano_model = MANO().to(args.device)
    mano_model.layer = mano_model.layer.to(device)
    mesh_sampler = Mesh()

    # Renderer for visualization
    renderer = Renderer(faces=mano_model.face)

    # Load pretrained model
    trans_encoder = []

    input_feat_dim = [int(item) for item in args.input_feat_dim.split(',')]
    hidden_feat_dim = [int(item) for item in args.hidden_feat_dim.split(',')]
    output_feat_dim = input_feat_dim[1:] + [3]
    
    # which encoder block to have graph convs
    which_blk_graph = [int(item) for item in args.which_gcn.split(',')]

    if args.run_eval_only==True and args.resume_checkpoint!=None and args.resume_checkpoint!='None' and 'state_dict' not in args.resume_checkpoint:
        # if only run eval, load checkpoint
        logger.info("Evaluation: Loading from checkpoint {}".format(args.resume_checkpoint))
        _model = torch.load(args.resume_checkpoint)

    else:
        # init three transformer-encoder blocks in a loop
        for i in range(len(output_feat_dim)):
            config_class, model_class = BertConfig, Graphormer
            config = config_class.from_pretrained(args.config_name if args.config_name \
                    else args.model_name_or_path)

            config.output_attentions = False
            config.hidden_dropout_prob = args.drop_out
            config.img_feature_dim = input_feat_dim[i] 
            config.output_feature_dim = output_feat_dim[i]
            args.hidden_size = hidden_feat_dim[i]
            args.intermediate_size = int(args.hidden_size*2)

            if which_blk_graph[i]==1:
                config.graph_conv = True
                logger.info("Add Graph Conv")
            else:
                config.graph_conv = False

            config.mesh_type = args.mesh_type

            # update model structure if specified in arguments
            update_params = ['num_hidden_layers', 'hidden_size', 'num_attention_heads', 'intermediate_size']
            for idx, param in enumerate(update_params):
                arg_param = getattr(args, param)
                config_param = getattr(config, param)
                if arg_param > 0 and arg_param != config_param:
                    logger.info("Update config parameter {}: {} -> {}".format(param, config_param, arg_param))
                    setattr(config, param, arg_param)

            # init a transformer encoder and append it to a list
            assert config.hidden_size % config.num_attention_heads == 0
            model = model_class(config=config) 
            logger.info("Init model from scratch.")
            trans_encoder.append(model)
        
        # create backbone model
        if args.arch=='hrnet':
            hrnet_yaml = 'models/hrnet/cls_hrnet_w40_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
            hrnet_checkpoint = 'models/hrnet/hrnetv2_w40_imagenet_pretrained.pth'
            hrnet_update_config(hrnet_config, hrnet_yaml)
            backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
            logger.info('=> loading hrnet-v2-w40 model')
        elif args.arch=='hrnet-w64':
            hrnet_yaml = 'models/hrnet/cls_hrnet_w64_sgd_lr5e-2_wd1e-4_bs32_x100.yaml'
            hrnet_checkpoint = 'models/hrnet/hrnetv2_w64_imagenet_pretrained.pth'
            hrnet_update_config(hrnet_config, hrnet_yaml)
            backbone = get_cls_net_gridfeat(hrnet_config, pretrained=hrnet_checkpoint)
            logger.info('=> loading hrnet-v2-w64 model')
        else:
            print("=> using pre-trained model '{}'".format(args.arch))
            backbone = models.__dict__[args.arch](pretrained=True)
            # remove the last fc layer
            backbone = torch.nn.Sequential(*list(backbone.children())[:-1])

        trans_encoder = torch.nn.Sequential(*trans_encoder)
        total_params = sum(p.numel() for p in trans_encoder.parameters())
        logger.info('Graphormer encoders total parameters: {}'.format(total_params))
        backbone_total_params = sum(p.numel() for p in backbone.parameters())
        logger.info('Backbone total parameters: {}'.format(backbone_total_params))

        # build end-to-end Graphormer network (CNN backbone + multi-layer Graphormer encoder)
        _model = Graphormer_Network(args, config, backbone, trans_encoder)

        if args.resume_checkpoint!=None and args.resume_checkpoint!='None':
            # for fine-tuning or resume training or inference, load weights from checkpoint
            logger.info("Loading state dict from checkpoint {}".format(args.resume_checkpoint))
            # workaround approach to load sparse tensor in graph conv.
            state_dict = torch.load(args.resume_checkpoint)
            _model.load_state_dict(state_dict, strict=False)
            del state_dict
            gc.collect()
            torch.cuda.empty_cache()
    
    _model.to(args.device)
    logger.info("Training parameters %s", args)

    if args.run_eval_only==True:
        val_dataloader = make_hand_data_loader(args, args.val_yaml, 
                                        args.distributed, is_train=False, scale_factor=args.img_scale_factor)
        run_eval_and_save(args, 'freihand', val_dataloader, _model, mano_model, renderer, mesh_sampler)

    else:
        train_dataloader = make_hand_data_loader(args, args.train_yaml, 
                                            args.distributed, is_train=True, scale_factor=args.img_scale_factor)
        run(args, train_dataloader, _model, mano_model, renderer, mesh_sampler)

if __name__ == "__main__":
    args = parse_args()
    main(args)