File size: 1,977 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
Useful geometric operations, e.g. Orthographic projection and a differentiable Rodrigues formula

Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR
"""
import torch

def rodrigues(theta):
    """Convert axis-angle representation to rotation matrix.
    Args:
        theta: size = [B, 3]
    Returns:
        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
    """
    l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1)
    angle = torch.unsqueeze(l1norm, -1)
    normalized = torch.div(theta, angle)
    angle = angle * 0.5
    v_cos = torch.cos(angle)
    v_sin = torch.sin(angle)
    quat = torch.cat([v_cos, v_sin * normalized], dim = 1)
    return quat2mat(quat)

def quat2mat(quat):
    """Convert quaternion coefficients to rotation matrix.
    Args:
        quat: size = [B, 4] 4 <===>(w, x, y, z)
    Returns:
        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
    """ 
    norm_quat = quat
    norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
    w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3]

    B = quat.size(0)

    w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
    wx, wy, wz = w*x, w*y, w*z
    xy, xz, yz = x*y, x*z, y*z

    rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
                          2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
                          2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
    return rotMat    
    
def orthographic_projection(X, camera):
    """Perform orthographic projection of 3D points X using the camera parameters
    Args:
        X: size = [B, N, 3]
        camera: size = [B, 3]
    Returns:
        Projected 2D points -- size = [B, N, 2]
    """ 
    camera = camera.view(-1, 1, 3)
    X_trans = X[:, :, :2] + camera[:, :, 1:]
    shape = X_trans.shape
    X_2d = (camera[:, :, 0] * X_trans.view(shape[0], -1)).view(shape)
    return X_2d