File size: 7,248 Bytes
0034848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""
Image processing tools

Modified from open source projects:
(https://github.com/nkolot/GraphCMR/)
(https://github.com/open-mmlab/mmdetection)

"""

import numpy as np
import base64
import cv2
import torch
import scipy.misc

def img_from_base64(imagestring):
    try:
        jpgbytestring = base64.b64decode(imagestring)
        nparr = np.frombuffer(jpgbytestring, np.uint8)
        r = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
        return r
    except ValueError:
        return None

def myimrotate(img, angle, center=None, scale=1.0, border_value=0, auto_bound=False):
    if center is not None and auto_bound:
        raise ValueError('`auto_bound` conflicts with `center`')
    h, w = img.shape[:2]
    if center is None:
        center = ((w - 1) * 0.5, (h - 1) * 0.5)
    assert isinstance(center, tuple)

    matrix = cv2.getRotationMatrix2D(center, angle, scale)
    if auto_bound:
        cos = np.abs(matrix[0, 0])
        sin = np.abs(matrix[0, 1])
        new_w = h * sin + w * cos
        new_h = h * cos + w * sin
        matrix[0, 2] += (new_w - w) * 0.5
        matrix[1, 2] += (new_h - h) * 0.5
        w = int(np.round(new_w))
        h = int(np.round(new_h))
    rotated = cv2.warpAffine(img, matrix, (w, h), borderValue=border_value)
    return rotated

def myimresize(img, size, return_scale=False, interpolation='bilinear'):

    h, w = img.shape[:2]
    resized_img = cv2.resize(
        img, (size[0],size[1]), interpolation=cv2.INTER_LINEAR)
    if not return_scale:
        return resized_img
    else:
        w_scale = size[0] / w
        h_scale = size[1] / h
        return resized_img, w_scale, h_scale


def get_transform(center, scale, res, rot=0):
    """Generate transformation matrix."""
    h = 200 * scale
    t = np.zeros((3, 3))
    t[0, 0] = float(res[1]) / h
    t[1, 1] = float(res[0]) / h
    t[0, 2] = res[1] * (-float(center[0]) / h + .5)
    t[1, 2] = res[0] * (-float(center[1]) / h + .5)
    t[2, 2] = 1
    if not rot == 0:
        rot = -rot # To match direction of rotation from cropping
        rot_mat = np.zeros((3,3))
        rot_rad = rot * np.pi / 180
        sn,cs = np.sin(rot_rad), np.cos(rot_rad)
        rot_mat[0,:2] = [cs, -sn]
        rot_mat[1,:2] = [sn, cs]
        rot_mat[2,2] = 1
        # Need to rotate around center
        t_mat = np.eye(3)
        t_mat[0,2] = -res[1]/2
        t_mat[1,2] = -res[0]/2
        t_inv = t_mat.copy()
        t_inv[:2,2] *= -1
        t = np.dot(t_inv,np.dot(rot_mat,np.dot(t_mat,t)))
    return t

def transform(pt, center, scale, res, invert=0, rot=0):
    """Transform pixel location to different reference."""
    t = get_transform(center, scale, res, rot=rot)
    if invert:
        # t = np.linalg.inv(t)
        t_torch = torch.from_numpy(t)
        t_torch = torch.inverse(t_torch)
        t = t_torch.numpy()
    new_pt = np.array([pt[0]-1, pt[1]-1, 1.]).T
    new_pt = np.dot(t, new_pt)
    return new_pt[:2].astype(int)+1

def crop(img, center, scale, res, rot=0):
    """Crop image according to the supplied bounding box."""
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1))-1
    # Bottom right point
    br = np.array(transform([res[0]+1, 
                             res[1]+1], center, scale, res, invert=1))-1
    # Padding so that when rotated proper amount of context is included
    pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)
    if not rot == 0:
        ul -= pad
        br += pad
    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.zeros(new_shape)

    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(len(img[0]), br[0])
    old_y = max(0, ul[1]), min(len(img), br[1])

    new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], 
                                                        old_x[0]:old_x[1]]
    if not rot == 0:
        # Remove padding
        # new_img = scipy.misc.imrotate(new_img, rot)
        new_img = myimrotate(new_img, rot)
        new_img = new_img[pad:-pad, pad:-pad]

    # new_img = scipy.misc.imresize(new_img, res)
    new_img = myimresize(new_img, [res[0], res[1]])
    return new_img

def uncrop(img, center, scale, orig_shape, rot=0, is_rgb=True):
    """'Undo' the image cropping/resizing.
    This function is used when evaluating mask/part segmentation.
    """
    res = img.shape[:2]
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1))-1
    # Bottom right point
    br = np.array(transform([res[0]+1,res[1]+1], center, scale, res, invert=1))-1
    # size of cropped image
    crop_shape = [br[1] - ul[1], br[0] - ul[0]]

    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.zeros(orig_shape, dtype=np.uint8)
    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(orig_shape[1], br[0])
    old_y = max(0, ul[1]), min(orig_shape[0], br[1])
    # img = scipy.misc.imresize(img, crop_shape, interp='nearest')
    img = myimresize(img, [crop_shape[0],crop_shape[1]])
    new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]]
    return new_img

def rot_aa(aa, rot):
    """Rotate axis angle parameters."""
    # pose parameters
    R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
                  [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
                  [0, 0, 1]])
    # find the rotation of the body in camera frame
    per_rdg, _ = cv2.Rodrigues(aa)
    # apply the global rotation to the global orientation
    resrot, _ = cv2.Rodrigues(np.dot(R,per_rdg))
    aa = (resrot.T)[0]
    return aa

def flip_img(img):
    """Flip rgb images or masks.
    channels come last, e.g. (256,256,3).
    """
    img = np.fliplr(img)
    return img

def flip_kp(kp):
    """Flip keypoints."""
    flipped_parts = [5, 4, 3, 2, 1, 0, 11, 10, 9, 8, 7, 6, 12, 13, 14, 15, 16, 17, 18, 19, 21, 20, 23, 22]
    kp = kp[flipped_parts]
    kp[:,0] = - kp[:,0]
    return kp

def flip_pose(pose):
    """Flip pose.
    The flipping is based on SMPL parameters.
    """
    flippedParts = [0, 1, 2, 6, 7, 8, 3, 4, 5, 9, 10, 11, 15, 16, 17, 12, 13,
                    14 ,18, 19, 20, 24, 25, 26, 21, 22, 23, 27, 28, 29, 33, 
                    34, 35, 30, 31, 32, 36, 37, 38, 42, 43, 44, 39, 40, 41, 
                    45, 46, 47, 51, 52, 53, 48, 49, 50, 57, 58, 59, 54, 55, 
                    56, 63, 64, 65, 60, 61, 62, 69, 70, 71, 66, 67, 68]
    pose = pose[flippedParts]
    # we also negate the second and the third dimension of the axis-angle
    pose[1::3] = -pose[1::3]
    pose[2::3] = -pose[2::3]
    return pose

def flip_aa(aa):
    """Flip axis-angle representation.
    We negate the second and the third dimension of the axis-angle.
    """
    aa[1] = -aa[1]
    aa[2] = -aa[2]
    return aa