Spaces:
Configuration error
Configuration error
File size: 23,619 Bytes
0034848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
"""
Rendering tools for 3D mesh visualization on 2D image.
Parts of the code are taken from https://github.com/akanazawa/hmr
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import cv2
import code
from opendr.camera import ProjectPoints
from opendr.renderer import ColoredRenderer, TexturedRenderer
from opendr.lighting import LambertianPointLight
import random
# Rotate the points by a specified angle.
def rotateY(points, angle):
ry = np.array([
[np.cos(angle), 0., np.sin(angle)], [0., 1., 0.],
[-np.sin(angle), 0., np.cos(angle)]
])
return np.dot(points, ry)
def draw_skeleton(input_image, joints, draw_edges=True, vis=None, radius=None):
"""
joints is 3 x 19. but if not will transpose it.
0: Right ankle
1: Right knee
2: Right hip
3: Left hip
4: Left knee
5: Left ankle
6: Right wrist
7: Right elbow
8: Right shoulder
9: Left shoulder
10: Left elbow
11: Left wrist
12: Neck
13: Head top
14: nose
15: left_eye
16: right_eye
17: left_ear
18: right_ear
"""
if radius is None:
radius = max(4, (np.mean(input_image.shape[:2]) * 0.01).astype(int))
colors = {
'pink': (197, 27, 125), # L lower leg
'light_pink': (233, 163, 201), # L upper leg
'light_green': (161, 215, 106), # L lower arm
'green': (77, 146, 33), # L upper arm
'red': (215, 48, 39), # head
'light_red': (252, 146, 114), # head
'light_orange': (252, 141, 89), # chest
'purple': (118, 42, 131), # R lower leg
'light_purple': (175, 141, 195), # R upper
'light_blue': (145, 191, 219), # R lower arm
'blue': (69, 117, 180), # R upper arm
'gray': (130, 130, 130), #
'white': (255, 255, 255), #
}
image = input_image.copy()
input_is_float = False
if np.issubdtype(image.dtype, np.float):
input_is_float = True
max_val = image.max()
if max_val <= 2.: # should be 1 but sometimes it's slightly above 1
image = (image * 255).astype(np.uint8)
else:
image = (image).astype(np.uint8)
if joints.shape[0] != 2:
joints = joints.T
joints = np.round(joints).astype(int)
jcolors = [
'light_pink', 'light_pink', 'light_pink', 'pink', 'pink', 'pink',
'light_blue', 'light_blue', 'light_blue', 'blue', 'blue', 'blue',
'purple', 'purple', 'red', 'green', 'green', 'white', 'white',
'purple', 'purple', 'red', 'green', 'green', 'white', 'white'
]
if joints.shape[1] == 19:
# parent indices -1 means no parents
parents = np.array([
1, 2, 8, 9, 3, 4, 7, 8, 12, 12, 9, 10, 14, -1, 13, -1, -1, 15, 16
])
# Left is light and right is dark
ecolors = {
0: 'light_pink',
1: 'light_pink',
2: 'light_pink',
3: 'pink',
4: 'pink',
5: 'pink',
6: 'light_blue',
7: 'light_blue',
8: 'light_blue',
9: 'blue',
10: 'blue',
11: 'blue',
12: 'purple',
17: 'light_green',
18: 'light_green',
14: 'purple'
}
elif joints.shape[1] == 14:
parents = np.array([
1,
2,
8,
9,
3,
4,
7,
8,
-1,
-1,
9,
10,
13,
-1,
])
ecolors = {
0: 'light_pink',
1: 'light_pink',
2: 'light_pink',
3: 'pink',
4: 'pink',
5: 'pink',
6: 'light_blue',
7: 'light_blue',
10: 'light_blue',
11: 'blue',
12: 'purple'
}
elif joints.shape[1] == 21: # hand
parents = np.array([
-1,
0,
1,
2,
3,
0,
5,
6,
7,
0,
9,
10,
11,
0,
13,
14,
15,
0,
17,
18,
19,
])
ecolors = {
0: 'light_purple',
1: 'light_green',
2: 'light_green',
3: 'light_green',
4: 'light_green',
5: 'pink',
6: 'pink',
7: 'pink',
8: 'pink',
9: 'light_blue',
10: 'light_blue',
11: 'light_blue',
12: 'light_blue',
13: 'light_red',
14: 'light_red',
15: 'light_red',
16: 'light_red',
17: 'purple',
18: 'purple',
19: 'purple',
20: 'purple',
}
else:
print('Unknown skeleton!!')
for child in range(len(parents)):
point = joints[:, child]
# If invisible skip
if vis is not None and vis[child] == 0:
continue
if draw_edges:
cv2.circle(image, (point[0], point[1]), radius, colors['white'],
-1)
cv2.circle(image, (point[0], point[1]), radius - 1,
colors[jcolors[child]], -1)
else:
# cv2.circle(image, (point[0], point[1]), 5, colors['white'], 1)
cv2.circle(image, (point[0], point[1]), radius - 1,
colors[jcolors[child]], 1)
# cv2.circle(image, (point[0], point[1]), 5, colors['gray'], -1)
pa_id = parents[child]
if draw_edges and pa_id >= 0:
if vis is not None and vis[pa_id] == 0:
continue
point_pa = joints[:, pa_id]
cv2.circle(image, (point_pa[0], point_pa[1]), radius - 1,
colors[jcolors[pa_id]], -1)
if child not in ecolors.keys():
print('bad')
import ipdb
ipdb.set_trace()
cv2.line(image, (point[0], point[1]), (point_pa[0], point_pa[1]),
colors[ecolors[child]], radius - 2)
# Convert back in original dtype
if input_is_float:
if max_val <= 1.:
image = image.astype(np.float32) / 255.
else:
image = image.astype(np.float32)
return image
def draw_text(input_image, content):
"""
content is a dict. draws key: val on image
Assumes key is str, val is float
"""
image = input_image.copy()
input_is_float = False
if np.issubdtype(image.dtype, np.float):
input_is_float = True
image = (image * 255).astype(np.uint8)
black = (255, 255, 0)
margin = 15
start_x = 5
start_y = margin
for key in sorted(content.keys()):
text = "%s: %.2g" % (key, content[key])
cv2.putText(image, text, (start_x, start_y), 0, 0.45, black)
start_y += margin
if input_is_float:
image = image.astype(np.float32) / 255.
return image
def visualize_reconstruction(img, img_size, gt_kp, vertices, pred_kp, camera, renderer, color='pink', focal_length=1000):
"""Overlays gt_kp and pred_kp on img.
Draws vert with text.
Renderer is an instance of SMPLRenderer.
"""
gt_vis = gt_kp[:, 2].astype(bool)
loss = np.sum((gt_kp[gt_vis, :2] - pred_kp[gt_vis])**2)
debug_text = {"sc": camera[0], "tx": camera[1], "ty": camera[2], "kpl": loss}
# Fix a flength so i can render this with persp correct scale
res = img.shape[1]
camera_t = np.array([camera[1], camera[2], 2*focal_length/(res * camera[0] +1e-9)])
rend_img = renderer.render(vertices, camera_t=camera_t,
img=img, use_bg=True,
focal_length=focal_length,
body_color=color)
rend_img = draw_text(rend_img, debug_text)
# Draw skeleton
gt_joint = ((gt_kp[:, :2] + 1) * 0.5) * img_size
pred_joint = ((pred_kp + 1) * 0.5) * img_size
img_with_gt = draw_skeleton( img, gt_joint, draw_edges=False, vis=gt_vis)
skel_img = draw_skeleton(img_with_gt, pred_joint)
combined = np.hstack([skel_img, rend_img])
return combined
def visualize_reconstruction_test(img, img_size, gt_kp, vertices, pred_kp, camera, renderer, score, color='pink', focal_length=1000):
"""Overlays gt_kp and pred_kp on img.
Draws vert with text.
Renderer is an instance of SMPLRenderer.
"""
gt_vis = gt_kp[:, 2].astype(bool)
loss = np.sum((gt_kp[gt_vis, :2] - pred_kp[gt_vis])**2)
debug_text = {"sc": camera[0], "tx": camera[1], "ty": camera[2], "kpl": loss, "pa-mpjpe": score*1000}
# Fix a flength so i can render this with persp correct scale
res = img.shape[1]
camera_t = np.array([camera[1], camera[2], 2*focal_length/(res * camera[0] +1e-9)])
rend_img = renderer.render(vertices, camera_t=camera_t,
img=img, use_bg=True,
focal_length=focal_length,
body_color=color)
rend_img = draw_text(rend_img, debug_text)
# Draw skeleton
gt_joint = ((gt_kp[:, :2] + 1) * 0.5) * img_size
pred_joint = ((pred_kp + 1) * 0.5) * img_size
img_with_gt = draw_skeleton( img, gt_joint, draw_edges=False, vis=gt_vis)
skel_img = draw_skeleton(img_with_gt, pred_joint)
combined = np.hstack([skel_img, rend_img])
return combined
def visualize_reconstruction_and_att(img, img_size, vertices_full, vertices, vertices_2d, camera, renderer, ref_points, attention, focal_length=1000):
"""Overlays gt_kp and pred_kp on img.
Draws vert with text.
Renderer is an instance of SMPLRenderer.
"""
# Fix a flength so i can render this with persp correct scale
res = img.shape[1]
camera_t = np.array([camera[1], camera[2], 2*focal_length/(res * camera[0] +1e-9)])
rend_img = renderer.render(vertices_full, camera_t=camera_t,
img=img, use_bg=True,
focal_length=focal_length, body_color='light_blue')
heads_num, vertex_num, _ = attention.shape
all_head = np.zeros((vertex_num,vertex_num))
###### find max
# for i in range(vertex_num):
# for j in range(vertex_num):
# all_head[i,j] = np.max(attention[:,i,j])
##### find avg
for h in range(4):
att_per_img = attention[h]
all_head = all_head + att_per_img
all_head = all_head/4
col_sums = all_head.sum(axis=0)
all_head = all_head / col_sums[np.newaxis, :]
# code.interact(local=locals())
combined = []
if vertex_num>400: # body
selected_joints = [6,7,4,5,13] # [6,7,4,5,13,12]
else: # hand
selected_joints = [0, 4, 8, 12, 16, 20]
# Draw attention
for ii in range(len(selected_joints)):
reference_id = selected_joints[ii]
ref_point = ref_points[reference_id]
attention_to_show = all_head[reference_id][14::]
min_v = np.min(attention_to_show)
max_v = np.max(attention_to_show)
norm_attention_to_show = (attention_to_show - min_v)/(max_v-min_v)
vertices_norm = ((vertices_2d + 1) * 0.5) * img_size
ref_norm = ((ref_point + 1) * 0.5) * img_size
image = np.zeros_like(rend_img)
for jj in range(vertices_norm.shape[0]):
x = int(vertices_norm[jj,0])
y = int(vertices_norm[jj,1])
cv2.circle(image,(x,y), 1, (255,255,255), -1)
total_to_draw = []
for jj in range(vertices_norm.shape[0]):
thres = 0.0
if norm_attention_to_show[jj]>thres:
things = [norm_attention_to_show[jj], ref_norm, vertices_norm[jj]]
total_to_draw.append(things)
# plot_one_line(ref_norm, vertices_norm[jj], image, reference_id, alpha=0.4*(norm_attention_to_show[jj]-thres)/(1-thres) )
total_to_draw.sort()
max_att_score = total_to_draw[-1][0]
for item in total_to_draw:
attention_score = item[0]
ref_point = item[1]
vertex = item[2]
plot_one_line(ref_point, vertex, image, ii, alpha=(attention_score-thres)/(max_att_score-thres) )
# code.interact(local=locals())
if len(combined)==0:
combined = image
else:
combined = np.hstack([combined, image])
final = np.hstack([img, combined, rend_img])
return final
def visualize_reconstruction_and_att_local(img, img_size, vertices_full, vertices, vertices_2d, camera, renderer, ref_points, attention, color='light_blue', focal_length=1000):
"""Overlays gt_kp and pred_kp on img.
Draws vert with text.
Renderer is an instance of SMPLRenderer.
"""
# Fix a flength so i can render this with persp correct scale
res = img.shape[1]
camera_t = np.array([camera[1], camera[2], 2*focal_length/(res * camera[0] +1e-9)])
rend_img = renderer.render(vertices_full, camera_t=camera_t,
img=img, use_bg=True,
focal_length=focal_length, body_color=color)
heads_num, vertex_num, _ = attention.shape
all_head = np.zeros((vertex_num,vertex_num))
##### compute avg attention for 4 attention heads
for h in range(4):
att_per_img = attention[h]
all_head = all_head + att_per_img
all_head = all_head/4
col_sums = all_head.sum(axis=0)
all_head = all_head / col_sums[np.newaxis, :]
combined = []
if vertex_num>400: # body
selected_joints = [7] # [6,7,4,5,13,12]
else: # hand
selected_joints = [0] # [0, 4, 8, 12, 16, 20]
# Draw attention
for ii in range(len(selected_joints)):
reference_id = selected_joints[ii]
ref_point = ref_points[reference_id]
attention_to_show = all_head[reference_id][14::]
min_v = np.min(attention_to_show)
max_v = np.max(attention_to_show)
norm_attention_to_show = (attention_to_show - min_v)/(max_v-min_v)
vertices_norm = ((vertices_2d + 1) * 0.5) * img_size
ref_norm = ((ref_point + 1) * 0.5) * img_size
image = rend_img*0.4
total_to_draw = []
for jj in range(vertices_norm.shape[0]):
thres = 0.0
if norm_attention_to_show[jj]>thres:
things = [norm_attention_to_show[jj], ref_norm, vertices_norm[jj]]
total_to_draw.append(things)
total_to_draw.sort()
max_att_score = total_to_draw[-1][0]
for item in total_to_draw:
attention_score = item[0]
ref_point = item[1]
vertex = item[2]
plot_one_line(ref_point, vertex, image, ii, alpha=(attention_score-thres)/(max_att_score-thres) )
for jj in range(vertices_norm.shape[0]):
x = int(vertices_norm[jj,0])
y = int(vertices_norm[jj,1])
cv2.circle(image,(x,y), 1, (255,255,255), -1)
if len(combined)==0:
combined = image
else:
combined = np.hstack([combined, image])
final = np.hstack([img, combined, rend_img])
return final
def visualize_reconstruction_no_text(img, img_size, vertices, camera, renderer, color='pink', focal_length=1000):
"""Overlays gt_kp and pred_kp on img.
Draws vert with text.
Renderer is an instance of SMPLRenderer.
"""
# Fix a flength so i can render this with persp correct scale
res = img.shape[1]
camera_t = np.array([camera[1], camera[2], 2*focal_length/(res * camera[0] +1e-9)])
rend_img = renderer.render(vertices, camera_t=camera_t,
img=img, use_bg=True,
focal_length=focal_length,
body_color=color)
combined = np.hstack([img, rend_img])
return combined
def plot_one_line(ref, vertex, img, color_index, alpha=0.0, line_thickness=None):
# 13,6,7,8,3,4,5
# att_colors = [(255, 221, 104), (255, 255, 0), (255, 215, 227), (210, 240, 119), \
# (209, 238, 245), (244, 200, 243), (233, 242, 216)]
att_colors = [(255, 255, 0), (244, 200, 243), (210, 243, 119), (209, 238, 255), (200, 208, 255), (250, 238, 215)]
overlay = img.copy()
# output = img.copy()
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
color = list(att_colors[color_index])
c1, c2 = (int(ref[0]), int(ref[1])), (int(vertex[0]), int(vertex[1]))
cv2.line(overlay, c1, c2, (alpha*float(color[0])/255,alpha*float(color[1])/255,alpha*float(color[2])/255) , thickness=tl, lineType=cv2.LINE_AA)
cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
def cam2pixel(cam_coord, f, c):
x = cam_coord[:, 0] / (cam_coord[:, 2]) * f[0] + c[0]
y = cam_coord[:, 1] / (cam_coord[:, 2]) * f[1] + c[1]
z = cam_coord[:, 2]
img_coord = np.concatenate((x[:,None], y[:,None], z[:,None]),1)
return img_coord
class Renderer(object):
"""
Render mesh using OpenDR for visualization.
"""
def __init__(self, width=800, height=600, near=0.5, far=1000, faces=None):
self.colors = {'hand': [.9, .9, .9], 'pink': [.9, .7, .7], 'light_blue': [0.65098039, 0.74117647, 0.85882353] }
self.width = width
self.height = height
self.faces = faces
self.renderer = ColoredRenderer()
def render(self, vertices, faces=None, img=None,
camera_t=np.zeros([3], dtype=np.float32),
camera_rot=np.zeros([3], dtype=np.float32),
camera_center=None,
use_bg=False,
bg_color=(0.0, 0.0, 0.0),
body_color=None,
focal_length=5000,
disp_text=False,
gt_keyp=None,
pred_keyp=None,
**kwargs):
if img is not None:
height, width = img.shape[:2]
else:
height, width = self.height, self.width
if faces is None:
faces = self.faces
if camera_center is None:
camera_center = np.array([width * 0.5,
height * 0.5])
self.renderer.camera = ProjectPoints(rt=camera_rot,
t=camera_t,
f=focal_length * np.ones(2),
c=camera_center,
k=np.zeros(5))
dist = np.abs(self.renderer.camera.t.r[2] -
np.mean(vertices, axis=0)[2])
far = dist + 20
self.renderer.frustum = {'near': 1.0, 'far': far,
'width': width,
'height': height}
if img is not None:
if use_bg:
self.renderer.background_image = img
else:
self.renderer.background_image = np.ones_like(
img) * np.array(bg_color)
if body_color is None:
color = self.colors['light_blue']
else:
color = self.colors[body_color]
if isinstance(self.renderer, TexturedRenderer):
color = [1.,1.,1.]
self.renderer.set(v=vertices, f=faces,
vc=color, bgcolor=np.ones(3))
albedo = self.renderer.vc
# Construct Back Light (on back right corner)
yrot = np.radians(120)
self.renderer.vc = LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([-200, -100, -100]), yrot),
vc=albedo,
light_color=np.array([1, 1, 1]))
# Construct Left Light
self.renderer.vc += LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([800, 10, 300]), yrot),
vc=albedo,
light_color=np.array([1, 1, 1]))
# Construct Right Light
self.renderer.vc += LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([-500, 500, 1000]), yrot),
vc=albedo,
light_color=np.array([.7, .7, .7]))
return self.renderer.r
def render_vertex_color(self, vertices, faces=None, img=None,
camera_t=np.zeros([3], dtype=np.float32),
camera_rot=np.zeros([3], dtype=np.float32),
camera_center=None,
use_bg=False,
bg_color=(0.0, 0.0, 0.0),
vertex_color=None,
focal_length=5000,
disp_text=False,
gt_keyp=None,
pred_keyp=None,
**kwargs):
if img is not None:
height, width = img.shape[:2]
else:
height, width = self.height, self.width
if faces is None:
faces = self.faces
if camera_center is None:
camera_center = np.array([width * 0.5,
height * 0.5])
self.renderer.camera = ProjectPoints(rt=camera_rot,
t=camera_t,
f=focal_length * np.ones(2),
c=camera_center,
k=np.zeros(5))
dist = np.abs(self.renderer.camera.t.r[2] -
np.mean(vertices, axis=0)[2])
far = dist + 20
self.renderer.frustum = {'near': 1.0, 'far': far,
'width': width,
'height': height}
if img is not None:
if use_bg:
self.renderer.background_image = img
else:
self.renderer.background_image = np.ones_like(
img) * np.array(bg_color)
if vertex_color is None:
vertex_color = self.colors['light_blue']
self.renderer.set(v=vertices, f=faces,
vc=vertex_color, bgcolor=np.ones(3))
albedo = self.renderer.vc
# Construct Back Light (on back right corner)
yrot = np.radians(120)
self.renderer.vc = LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([-200, -100, -100]), yrot),
vc=albedo,
light_color=np.array([1, 1, 1]))
# Construct Left Light
self.renderer.vc += LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([800, 10, 300]), yrot),
vc=albedo,
light_color=np.array([1, 1, 1]))
# Construct Right Light
self.renderer.vc += LambertianPointLight(
f=self.renderer.f,
v=self.renderer.v,
num_verts=self.renderer.v.shape[0],
light_pos=rotateY(np.array([-500, 500, 1000]), yrot),
vc=albedo,
light_color=np.array([.7, .7, .7]))
return self.renderer.r |