Spaces:
Configuration error
Configuration error
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0) | |
import torch | |
import gguf | |
import copy | |
import logging | |
import comfy.sd | |
import comfy.utils | |
import comfy.model_management | |
import comfy.model_patcher | |
import folder_paths | |
from .ops import GGMLTensor, GGMLOps, move_patch_to_device | |
from .dequant import is_quantized, is_torch_compatible | |
# Add a custom keys for files ending in .gguf | |
if "unet_gguf" not in folder_paths.folder_names_and_paths: | |
orig = folder_paths.folder_names_and_paths.get("diffusion_models", folder_paths.folder_names_and_paths.get("unet", [[], set()])) | |
folder_paths.folder_names_and_paths["unet_gguf"] = (orig[0], {".gguf"}) | |
if "clip_gguf" not in folder_paths.folder_names_and_paths: | |
orig = folder_paths.folder_names_and_paths.get("clip", [[], set()]) | |
folder_paths.folder_names_and_paths["clip_gguf"] = (orig[0], {".gguf"}) | |
def gguf_sd_loader_get_orig_shape(reader, tensor_name): | |
field_key = f"comfy.gguf.orig_shape.{tensor_name}" | |
field = reader.get_field(field_key) | |
if field is None: | |
return None | |
# Has original shape metadata, so we try to decode it. | |
if len(field.types) != 2 or field.types[0] != gguf.GGUFValueType.ARRAY or field.types[1] != gguf.GGUFValueType.INT32: | |
raise TypeError(f"Bad original shape metadata for {field_key}: Expected ARRAY of INT32, got {field.types}") | |
return torch.Size(tuple(int(field.parts[part_idx][0]) for part_idx in field.data)) | |
def gguf_sd_loader(path, handle_prefix="model.diffusion_model."): | |
""" | |
Read state dict as fake tensors | |
""" | |
reader = gguf.GGUFReader(path) | |
# filter and strip prefix | |
has_prefix = False | |
if handle_prefix is not None: | |
prefix_len = len(handle_prefix) | |
tensor_names = set(tensor.name for tensor in reader.tensors) | |
has_prefix = any(s.startswith(handle_prefix) for s in tensor_names) | |
tensors = [] | |
for tensor in reader.tensors: | |
sd_key = tensor_name = tensor.name | |
if has_prefix: | |
if not tensor_name.startswith(handle_prefix): | |
continue | |
sd_key = tensor_name[prefix_len:] | |
tensors.append((sd_key, tensor)) | |
# detect and verify architecture | |
compat = None | |
arch_str = None | |
arch_field = reader.get_field("general.architecture") | |
if arch_field is not None: | |
if len(arch_field.types) != 1 or arch_field.types[0] != gguf.GGUFValueType.STRING: | |
raise TypeError(f"Bad type for GGUF general.architecture key: expected string, got {arch_field.types!r}") | |
arch_str = str(arch_field.parts[arch_field.data[-1]], encoding="utf-8") | |
if arch_str not in {"flux", "sd1", "sdxl", "t5", "t5encoder"}: | |
raise ValueError(f"Unexpected architecture type in GGUF file, expected one of flux, sd1, sdxl, t5encoder but got {arch_str!r}") | |
else: # stable-diffusion.cpp | |
# import here to avoid changes to convert.py breaking regular models | |
from .tools.convert import detect_arch | |
arch_str = detect_arch(set(val[0] for val in tensors)) | |
compat = "sd.cpp" | |
# main loading loop | |
state_dict = {} | |
qtype_dict = {} | |
for sd_key, tensor in tensors: | |
tensor_name = tensor.name | |
tensor_type_str = str(tensor.tensor_type) | |
torch_tensor = torch.from_numpy(tensor.data) # mmap | |
shape = gguf_sd_loader_get_orig_shape(reader, tensor_name) | |
if shape is None: | |
shape = torch.Size(tuple(int(v) for v in reversed(tensor.shape))) | |
# Workaround for stable-diffusion.cpp SDXL detection. | |
if compat == "sd.cpp" and arch_str == "sdxl": | |
if any([tensor_name.endswith(x) for x in (".proj_in.weight", ".proj_out.weight")]): | |
while len(shape) > 2 and shape[-1] == 1: | |
shape = shape[:-1] | |
# add to state dict | |
if tensor.tensor_type in {gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16}: | |
torch_tensor = torch_tensor.view(*shape) | |
state_dict[sd_key] = GGMLTensor(torch_tensor, tensor_type=tensor.tensor_type, tensor_shape=shape) | |
qtype_dict[tensor_type_str] = qtype_dict.get(tensor_type_str, 0) + 1 | |
# sanity check debug print | |
print("\nggml_sd_loader:") | |
for k,v in qtype_dict.items(): | |
print(f" {k:30}{v:3}") | |
return state_dict | |
# for remapping llama.cpp -> original key names | |
clip_sd_map = { | |
"enc.": "encoder.", | |
".blk.": ".block.", | |
"token_embd": "shared", | |
"output_norm": "final_layer_norm", | |
"attn_q": "layer.0.SelfAttention.q", | |
"attn_k": "layer.0.SelfAttention.k", | |
"attn_v": "layer.0.SelfAttention.v", | |
"attn_o": "layer.0.SelfAttention.o", | |
"attn_norm": "layer.0.layer_norm", | |
"attn_rel_b": "layer.0.SelfAttention.relative_attention_bias", | |
"ffn_up": "layer.1.DenseReluDense.wi_1", | |
"ffn_down": "layer.1.DenseReluDense.wo", | |
"ffn_gate": "layer.1.DenseReluDense.wi_0", | |
"ffn_norm": "layer.1.layer_norm", | |
} | |
def gguf_clip_loader(path): | |
raw_sd = gguf_sd_loader(path) | |
assert "enc.blk.23.ffn_up.weight" in raw_sd, "Invalid Text Encoder!" | |
sd = {} | |
for k,v in raw_sd.items(): | |
for s,d in clip_sd_map.items(): | |
k = k.replace(s,d) | |
sd[k] = v | |
return sd | |
# TODO: Temporary fix for now | |
import collections | |
class GGUFModelPatcher(comfy.model_patcher.ModelPatcher): | |
patch_on_device = False | |
def patch_weight_to_device(self, key, device_to=None, inplace_update=False): | |
if key not in self.patches: | |
return | |
weight = comfy.utils.get_attr(self.model, key) | |
try: | |
from comfy.lora import calculate_weight | |
except Exception: | |
calculate_weight = self.calculate_weight | |
patches = self.patches[key] | |
if is_quantized(weight): | |
out_weight = weight.to(device_to) | |
patches = move_patch_to_device(patches, self.load_device if self.patch_on_device else self.offload_device) | |
# TODO: do we ever have legitimate duplicate patches? (i.e. patch on top of patched weight) | |
out_weight.patches = [(calculate_weight, patches, key)] | |
else: | |
inplace_update = self.weight_inplace_update or inplace_update | |
if key not in self.backup: | |
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])( | |
weight.to(device=self.offload_device, copy=inplace_update), inplace_update | |
) | |
if device_to is not None: | |
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) | |
else: | |
temp_weight = weight.to(torch.float32, copy=True) | |
out_weight = calculate_weight(patches, temp_weight, key) | |
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype) | |
if inplace_update: | |
comfy.utils.copy_to_param(self.model, key, out_weight) | |
else: | |
comfy.utils.set_attr_param(self.model, key, out_weight) | |
def unpatch_model(self, device_to=None, unpatch_weights=True): | |
if unpatch_weights: | |
for p in self.model.parameters(): | |
if is_torch_compatible(p): | |
continue | |
patches = getattr(p, "patches", []) | |
if len(patches) > 0: | |
p.patches = [] | |
# TODO: Find another way to not unload after patches | |
return super().unpatch_model(device_to=device_to, unpatch_weights=unpatch_weights) | |
mmap_released = False | |
def load(self, *args, force_patch_weights=False, **kwargs): | |
# always call `patch_weight_to_device` even for lowvram | |
super().load(*args, force_patch_weights=True, **kwargs) | |
# make sure nothing stays linked to mmap after first load | |
if not self.mmap_released: | |
linked = [] | |
if kwargs.get("lowvram_model_memory", 0) > 0: | |
for n, m in self.model.named_modules(): | |
if hasattr(m, "weight"): | |
device = getattr(m.weight, "device", None) | |
if device == self.offload_device: | |
linked.append((n, m)) | |
continue | |
if hasattr(m, "bias"): | |
device = getattr(m.bias, "device", None) | |
if device == self.offload_device: | |
linked.append((n, m)) | |
continue | |
if linked: | |
print(f"Attempting to release mmap ({len(linked)})") | |
for n, m in linked: | |
# TODO: possible to OOM, find better way to detach | |
m.to(self.load_device).to(self.offload_device) | |
self.mmap_released = True | |
def clone(self, *args, **kwargs): | |
n = GGUFModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update) | |
n.patches = {} | |
for k in self.patches: | |
n.patches[k] = self.patches[k][:] | |
n.patches_uuid = self.patches_uuid | |
n.object_patches = self.object_patches.copy() | |
n.model_options = copy.deepcopy(self.model_options) | |
n.backup = self.backup | |
n.object_patches_backup = self.object_patches_backup | |
n.patch_on_device = getattr(self, "patch_on_device", False) | |
return n | |
class UnetLoaderGGUF: | |
def INPUT_TYPES(s): | |
unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")] | |
return { | |
"required": { | |
"unet_name": (unet_names,), | |
} | |
} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "load_unet" | |
CATEGORY = "bootleg" | |
TITLE = "Unet Loader (GGUF)" | |
def load_unet(self, unet_name, dequant_dtype=None, patch_dtype=None, patch_on_device=None): | |
ops = GGMLOps() | |
if dequant_dtype in ("default", None): | |
ops.Linear.dequant_dtype = None | |
elif dequant_dtype in ["target"]: | |
ops.Linear.dequant_dtype = dequant_dtype | |
else: | |
ops.Linear.dequant_dtype = getattr(torch, dequant_dtype) | |
if patch_dtype in ("default", None): | |
ops.Linear.patch_dtype = None | |
elif patch_dtype in ["target"]: | |
ops.Linear.patch_dtype = patch_dtype | |
else: | |
ops.Linear.patch_dtype = getattr(torch, patch_dtype) | |
# init model | |
unet_path = folder_paths.get_full_path("unet", unet_name) | |
sd = gguf_sd_loader(unet_path) | |
model = comfy.sd.load_diffusion_model_state_dict( | |
sd, model_options={"custom_operations": ops} | |
) | |
if model is None: | |
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path)) | |
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path)) | |
model = GGUFModelPatcher.clone(model) | |
model.patch_on_device = patch_on_device | |
return (model,) | |
class UnetLoaderGGUFAdvanced(UnetLoaderGGUF): | |
def INPUT_TYPES(s): | |
unet_names = [x for x in folder_paths.get_filename_list("unet_gguf")] | |
return { | |
"required": { | |
"unet_name": (unet_names,), | |
"dequant_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}), | |
"patch_dtype": (["default", "target", "float32", "float16", "bfloat16"], {"default": "default"}), | |
"patch_on_device": ("BOOLEAN", {"default": False}), | |
} | |
} | |
TITLE = "Unet Loader (GGUF/Advanced)" | |
clip_name_dict = { | |
"stable_diffusion": comfy.sd.CLIPType.STABLE_DIFFUSION, | |
"stable_cascade": comfy.sd.CLIPType.STABLE_CASCADE, | |
"stable_audio": comfy.sd.CLIPType.STABLE_AUDIO, | |
"sdxl": comfy.sd.CLIPType.STABLE_DIFFUSION, | |
"sd3": comfy.sd.CLIPType.SD3, | |
"flux": comfy.sd.CLIPType.FLUX, | |
} | |
class CLIPLoaderGGUF: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"clip_name": (s.get_filename_list(),), | |
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio"],), | |
} | |
} | |
RETURN_TYPES = ("CLIP",) | |
FUNCTION = "load_clip" | |
CATEGORY = "bootleg" | |
TITLE = "CLIPLoader (GGUF)" | |
def get_filename_list(s): | |
files = [] | |
files += folder_paths.get_filename_list("clip") | |
files += folder_paths.get_filename_list("clip_gguf") | |
return sorted(files) | |
def load_data(self, ckpt_paths): | |
clip_data = [] | |
for p in ckpt_paths: | |
if p.endswith(".gguf"): | |
clip_data.append(gguf_clip_loader(p)) | |
else: | |
sd = comfy.utils.load_torch_file(p, safe_load=True) | |
clip_data.append( | |
{k:GGMLTensor(v, tensor_type=gguf.GGMLQuantizationType.F16, tensor_shape=v.shape) for k,v in sd.items()} | |
) | |
return clip_data | |
def load_patcher(self, clip_paths, clip_type, clip_data): | |
clip = comfy.sd.load_text_encoder_state_dicts( | |
clip_type = clip_type, | |
state_dicts = clip_data, | |
model_options = { | |
"custom_operations": GGMLOps, | |
"initial_device": comfy.model_management.text_encoder_offload_device() | |
}, | |
embedding_directory = folder_paths.get_folder_paths("embeddings"), | |
) | |
clip.patcher = GGUFModelPatcher.clone(clip.patcher) | |
# for some reason this is just missing in some SAI checkpoints | |
if getattr(clip.cond_stage_model, "clip_l", None) is not None: | |
if getattr(clip.cond_stage_model.clip_l.transformer.text_projection.weight, "tensor_shape", None) is None: | |
clip.cond_stage_model.clip_l.transformer.text_projection = comfy.ops.manual_cast.Linear(768, 768) | |
if getattr(clip.cond_stage_model, "clip_g", None) is not None: | |
if getattr(clip.cond_stage_model.clip_g.transformer.text_projection.weight, "tensor_shape", None) is None: | |
clip.cond_stage_model.clip_g.transformer.text_projection = comfy.ops.manual_cast.Linear(1280, 1280) | |
return clip | |
def load_clip(self, clip_name, type="stable_diffusion"): | |
clip_path = folder_paths.get_full_path("clip", clip_name) | |
clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION) | |
return (self.load_patcher([clip_path], clip_type, self.load_data([clip_path])),) | |
class DualCLIPLoaderGGUF(CLIPLoaderGGUF): | |
def INPUT_TYPES(s): | |
file_options = (s.get_filename_list(), ) | |
return { | |
"required": { | |
"clip_name1": file_options, | |
"clip_name2": file_options, | |
"type": (("sdxl", "sd3", "flux"), ), | |
} | |
} | |
TITLE = "DualCLIPLoader (GGUF)" | |
def load_clip(self, clip_name1, clip_name2, type): | |
clip_path1 = folder_paths.get_full_path("clip", clip_name1) | |
clip_path2 = folder_paths.get_full_path("clip", clip_name2) | |
clip_paths = (clip_path1, clip_path2) | |
clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION) | |
return (self.load_patcher(clip_paths, clip_type, self.load_data(clip_paths)),) | |
class TripleCLIPLoaderGGUF(CLIPLoaderGGUF): | |
def INPUT_TYPES(s): | |
file_options = (s.get_filename_list(), ) | |
return { | |
"required": { | |
"clip_name1": file_options, | |
"clip_name2": file_options, | |
"clip_name3": file_options, | |
} | |
} | |
TITLE = "TripleCLIPLoader (GGUF)" | |
def load_clip(self, clip_name1, clip_name2, clip_name3, type="sd3"): | |
clip_path1 = folder_paths.get_full_path("clip", clip_name1) | |
clip_path2 = folder_paths.get_full_path("clip", clip_name2) | |
clip_path3 = folder_paths.get_full_path("clip", clip_name3) | |
clip_paths = (clip_path1, clip_path2, clip_path3) | |
clip_type = clip_name_dict.get(type, comfy.sd.CLIPType.STABLE_DIFFUSION) | |
return (self.load_patcher(clip_paths, clip_type, self.load_data(clip_paths)),) | |
NODE_CLASS_MAPPINGS = { | |
"UnetLoaderGGUF": UnetLoaderGGUF, | |
"CLIPLoaderGGUF": CLIPLoaderGGUF, | |
"DualCLIPLoaderGGUF": DualCLIPLoaderGGUF, | |
"TripleCLIPLoaderGGUF": TripleCLIPLoaderGGUF, | |
"UnetLoaderGGUFAdvanced": UnetLoaderGGUFAdvanced, | |
} | |