JasonSmithSO's picture
Upload 578 files
8866644 verified
import comfy.supported_models_base
import comfy.latent_formats
import comfy.model_patcher
import comfy.model_base
import comfy.utils
import comfy.conds
import torch
from comfy import model_management
from tqdm import tqdm
class EXM_HYDiT(comfy.supported_models_base.BASE):
unet_config = {}
unet_extra_config = {}
latent_format = comfy.latent_formats.SDXL
def __init__(self, model_conf):
self.unet_config = model_conf.get("unet_config", {})
self.sampling_settings = model_conf.get("sampling_settings", {})
self.latent_format = self.latent_format()
# UNET is handled by extension
self.unet_config["disable_unet_model_creation"] = True
def model_type(self, state_dict, prefix=""):
return comfy.model_base.ModelType.V_PREDICTION
class EXM_HYDiT_Model(comfy.model_base.BaseModel):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
for name in ["context_t5", "context_mask", "context_t5_mask"]:
out[name] = comfy.conds.CONDRegular(kwargs[name])
src_size_cond = kwargs.get("src_size_cond", None)
if src_size_cond is not None:
out["src_size_cond"] = comfy.conds.CONDRegular(torch.tensor(src_size_cond))
return out
def load_hydit(model_path, model_conf):
state_dict = comfy.utils.load_torch_file(model_path)
state_dict = state_dict.get("model", state_dict)
parameters = comfy.utils.calculate_parameters(state_dict)
unet_dtype = model_management.unet_dtype(model_params=parameters)
load_device = comfy.model_management.get_torch_device()
offload_device = comfy.model_management.unet_offload_device()
# ignore fp8/etc and use directly for now
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device)
if manual_cast_dtype:
print(f"HunYuanDiT: falling back to {manual_cast_dtype}")
unet_dtype = manual_cast_dtype
model_conf = EXM_HYDiT(model_conf)
model = EXM_HYDiT_Model(
model_conf,
model_type=comfy.model_base.ModelType.V_PREDICTION,
device=model_management.get_torch_device()
)
from .models.models import HunYuanDiT
model.diffusion_model = HunYuanDiT(
**model_conf.unet_config,
log_fn=tqdm.write,
)
model.diffusion_model.load_state_dict(state_dict)
model.diffusion_model.dtype = unet_dtype
model.diffusion_model.eval()
model.diffusion_model.to(unet_dtype)
model_patcher = comfy.model_patcher.ModelPatcher(
model,
load_device = load_device,
offload_device = offload_device,
current_device = "cpu",
)
return model_patcher