Spaces:
Configuration error
Configuration error
# For using the diffusers format weights | |
# Based on the original ComfyUI function + | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/master/tools/convert_pixart_alpha_to_diffusers.py | |
import torch | |
conversion_map_ms = [ # for multi_scale_train (MS) | |
# Resolution | |
("csize_embedder.mlp.0.weight", "adaln_single.emb.resolution_embedder.linear_1.weight"), | |
("csize_embedder.mlp.0.bias", "adaln_single.emb.resolution_embedder.linear_1.bias"), | |
("csize_embedder.mlp.2.weight", "adaln_single.emb.resolution_embedder.linear_2.weight"), | |
("csize_embedder.mlp.2.bias", "adaln_single.emb.resolution_embedder.linear_2.bias"), | |
# Aspect ratio | |
("ar_embedder.mlp.0.weight", "adaln_single.emb.aspect_ratio_embedder.linear_1.weight"), | |
("ar_embedder.mlp.0.bias", "adaln_single.emb.aspect_ratio_embedder.linear_1.bias"), | |
("ar_embedder.mlp.2.weight", "adaln_single.emb.aspect_ratio_embedder.linear_2.weight"), | |
("ar_embedder.mlp.2.bias", "adaln_single.emb.aspect_ratio_embedder.linear_2.bias"), | |
] | |
def get_depth(state_dict): | |
return sum(key.endswith('.attn1.to_k.bias') for key in state_dict.keys()) | |
def get_lora_depth(state_dict): | |
return sum(key.endswith('.attn1.to_k.lora_A.weight') for key in state_dict.keys()) | |
def get_conversion_map(state_dict): | |
conversion_map = [ # main SD conversion map (PixArt reference, HF Diffusers) | |
# Patch embeddings | |
("x_embedder.proj.weight", "pos_embed.proj.weight"), | |
("x_embedder.proj.bias", "pos_embed.proj.bias"), | |
# Caption projection | |
("y_embedder.y_embedding", "caption_projection.y_embedding"), | |
("y_embedder.y_proj.fc1.weight", "caption_projection.linear_1.weight"), | |
("y_embedder.y_proj.fc1.bias", "caption_projection.linear_1.bias"), | |
("y_embedder.y_proj.fc2.weight", "caption_projection.linear_2.weight"), | |
("y_embedder.y_proj.fc2.bias", "caption_projection.linear_2.bias"), | |
# AdaLN-single LN | |
("t_embedder.mlp.0.weight", "adaln_single.emb.timestep_embedder.linear_1.weight"), | |
("t_embedder.mlp.0.bias", "adaln_single.emb.timestep_embedder.linear_1.bias"), | |
("t_embedder.mlp.2.weight", "adaln_single.emb.timestep_embedder.linear_2.weight"), | |
("t_embedder.mlp.2.bias", "adaln_single.emb.timestep_embedder.linear_2.bias"), | |
# Shared norm | |
("t_block.1.weight", "adaln_single.linear.weight"), | |
("t_block.1.bias", "adaln_single.linear.bias"), | |
# Final block | |
("final_layer.linear.weight", "proj_out.weight"), | |
("final_layer.linear.bias", "proj_out.bias"), | |
("final_layer.scale_shift_table", "scale_shift_table"), | |
] | |
# Add actual transformer blocks | |
for depth in range(get_depth(state_dict)): | |
# Transformer blocks | |
conversion_map += [ | |
(f"blocks.{depth}.scale_shift_table", f"transformer_blocks.{depth}.scale_shift_table"), | |
# Projection | |
(f"blocks.{depth}.attn.proj.weight", f"transformer_blocks.{depth}.attn1.to_out.0.weight"), | |
(f"blocks.{depth}.attn.proj.bias", f"transformer_blocks.{depth}.attn1.to_out.0.bias"), | |
# Feed-forward | |
(f"blocks.{depth}.mlp.fc1.weight", f"transformer_blocks.{depth}.ff.net.0.proj.weight"), | |
(f"blocks.{depth}.mlp.fc1.bias", f"transformer_blocks.{depth}.ff.net.0.proj.bias"), | |
(f"blocks.{depth}.mlp.fc2.weight", f"transformer_blocks.{depth}.ff.net.2.weight"), | |
(f"blocks.{depth}.mlp.fc2.bias", f"transformer_blocks.{depth}.ff.net.2.bias"), | |
# Cross-attention (proj) | |
(f"blocks.{depth}.cross_attn.proj.weight" ,f"transformer_blocks.{depth}.attn2.to_out.0.weight"), | |
(f"blocks.{depth}.cross_attn.proj.bias" ,f"transformer_blocks.{depth}.attn2.to_out.0.bias"), | |
] | |
return conversion_map | |
def find_prefix(state_dict, target_key): | |
prefix = "" | |
for k in state_dict.keys(): | |
if k.endswith(target_key): | |
prefix = k.split(target_key)[0] | |
break | |
return prefix | |
def convert_state_dict(state_dict): | |
if "adaln_single.emb.resolution_embedder.linear_1.weight" in state_dict.keys(): | |
cmap = get_conversion_map(state_dict) + conversion_map_ms | |
else: | |
cmap = get_conversion_map(state_dict) | |
missing = [k for k,v in cmap if v not in state_dict] | |
new_state_dict = {k: state_dict[v] for k,v in cmap if k not in missing} | |
matched = list(v for k,v in cmap if v in state_dict.keys()) | |
for depth in range(get_depth(state_dict)): | |
for wb in ["weight", "bias"]: | |
# Self Attention | |
key = lambda a: f"transformer_blocks.{depth}.attn1.to_{a}.{wb}" | |
new_state_dict[f"blocks.{depth}.attn.qkv.{wb}"] = torch.cat(( | |
state_dict[key('q')], state_dict[key('k')], state_dict[key('v')] | |
), dim=0) | |
matched += [key('q'), key('k'), key('v')] | |
# Cross-attention (linear) | |
key = lambda a: f"transformer_blocks.{depth}.attn2.to_{a}.{wb}" | |
new_state_dict[f"blocks.{depth}.cross_attn.q_linear.{wb}"] = state_dict[key('q')] | |
new_state_dict[f"blocks.{depth}.cross_attn.kv_linear.{wb}"] = torch.cat(( | |
state_dict[key('k')], state_dict[key('v')] | |
), dim=0) | |
matched += [key('q'), key('k'), key('v')] | |
if len(matched) < len(state_dict): | |
print(f"PixArt: UNET conversion has leftover keys! ({len(matched)} vs {len(state_dict)})") | |
print(list( set(state_dict.keys()) - set(matched) )) | |
if len(missing) > 0: | |
print(f"PixArt: UNET conversion has missing keys!") | |
print(missing) | |
return new_state_dict | |
# Same as above but for LoRA weights: | |
def convert_lora_state_dict(state_dict, peft=True): | |
# koyha | |
rep_ak = lambda x: x.replace(".weight", ".lora_down.weight") | |
rep_bk = lambda x: x.replace(".weight", ".lora_up.weight") | |
rep_pk = lambda x: x.replace(".weight", ".alpha") | |
if peft: # peft | |
rep_ap = lambda x: x.replace(".weight", ".lora_A.weight") | |
rep_bp = lambda x: x.replace(".weight", ".lora_B.weight") | |
rep_pp = lambda x: x.replace(".weight", ".alpha") | |
prefix = find_prefix(state_dict, "adaln_single.linear.lora_A.weight") | |
state_dict = {k[len(prefix):]:v for k,v in state_dict.items()} | |
else: # OneTrainer | |
rep_ap = lambda x: x.replace(".", "_")[:-7] + ".lora_down.weight" | |
rep_bp = lambda x: x.replace(".", "_")[:-7] + ".lora_up.weight" | |
rep_pp = lambda x: x.replace(".", "_")[:-7] + ".alpha" | |
prefix = "lora_transformer_" | |
t5_marker = "lora_te_encoder" | |
t5_keys = [] | |
for key in list(state_dict.keys()): | |
if key.startswith(prefix): | |
state_dict[key[len(prefix):]] = state_dict.pop(key) | |
elif t5_marker in key: | |
t5_keys.append(state_dict.pop(key)) | |
if len(t5_keys) > 0: | |
print(f"Text Encoder not supported for PixArt LoRA, ignoring {len(t5_keys)} keys") | |
cmap = [] | |
cmap_unet = get_conversion_map(state_dict) + conversion_map_ms # todo: 512 model | |
for k, v in cmap_unet: | |
if v.endswith(".weight"): | |
cmap.append((rep_ak(k), rep_ap(v))) | |
cmap.append((rep_bk(k), rep_bp(v))) | |
if not peft: | |
cmap.append((rep_pk(k), rep_pp(v))) | |
missing = [k for k,v in cmap if v not in state_dict] | |
new_state_dict = {k: state_dict[v] for k,v in cmap if k not in missing} | |
matched = list(v for k,v in cmap if v in state_dict.keys()) | |
lora_depth = get_lora_depth(state_dict) | |
for fp, fk in ((rep_ap, rep_ak),(rep_bp, rep_bk)): | |
for depth in range(lora_depth): | |
# Self Attention | |
key = lambda a: fp(f"transformer_blocks.{depth}.attn1.to_{a}.weight") | |
new_state_dict[fk(f"blocks.{depth}.attn.qkv.weight")] = torch.cat(( | |
state_dict[key('q')], state_dict[key('k')], state_dict[key('v')] | |
), dim=0) | |
matched += [key('q'), key('k'), key('v')] | |
if not peft: | |
akey = lambda a: rep_pp(f"transformer_blocks.{depth}.attn1.to_{a}.weight") | |
new_state_dict[rep_pk((f"blocks.{depth}.attn.qkv.weight"))] = state_dict[akey("q")] | |
matched += [akey('q'), akey('k'), akey('v')] | |
# Self Attention projection? | |
key = lambda a: fp(f"transformer_blocks.{depth}.attn1.to_{a}.weight") | |
new_state_dict[fk(f"blocks.{depth}.attn.proj.weight")] = state_dict[key('out.0')] | |
matched += [key('out.0')] | |
# Cross-attention (linear) | |
key = lambda a: fp(f"transformer_blocks.{depth}.attn2.to_{a}.weight") | |
new_state_dict[fk(f"blocks.{depth}.cross_attn.q_linear.weight")] = state_dict[key('q')] | |
new_state_dict[fk(f"blocks.{depth}.cross_attn.kv_linear.weight")] = torch.cat(( | |
state_dict[key('k')], state_dict[key('v')] | |
), dim=0) | |
matched += [key('q'), key('k'), key('v')] | |
if not peft: | |
akey = lambda a: rep_pp(f"transformer_blocks.{depth}.attn2.to_{a}.weight") | |
new_state_dict[rep_pk((f"blocks.{depth}.cross_attn.q_linear.weight"))] = state_dict[akey("q")] | |
new_state_dict[rep_pk((f"blocks.{depth}.cross_attn.kv_linear.weight"))] = state_dict[akey("k")] | |
matched += [akey('q'), akey('k'), akey('v')] | |
# Cross Attention projection? | |
key = lambda a: fp(f"transformer_blocks.{depth}.attn2.to_{a}.weight") | |
new_state_dict[fk(f"blocks.{depth}.cross_attn.proj.weight")] = state_dict[key('out.0')] | |
matched += [key('out.0')] | |
key = fp(f"transformer_blocks.{depth}.ff.net.0.proj.weight") | |
new_state_dict[fk(f"blocks.{depth}.mlp.fc1.weight")] = state_dict[key] | |
matched += [key] | |
key = fp(f"transformer_blocks.{depth}.ff.net.2.weight") | |
new_state_dict[fk(f"blocks.{depth}.mlp.fc2.weight")] = state_dict[key] | |
matched += [key] | |
if len(matched) < len(state_dict): | |
print(f"PixArt: LoRA conversion has leftover keys! ({len(matched)} vs {len(state_dict)})") | |
print(list( set(state_dict.keys()) - set(matched) )) | |
if len(missing) > 0: | |
print(f"PixArt: LoRA conversion has missing keys! (probably)") | |
print(missing) | |
return new_state_dict | |