Spaces:
Configuration error
Configuration error
from typing import Optional, Sequence, Tuple | |
import cv2 | |
import numpy as np | |
from custom_albumentations.augmentations.utils import ( | |
_maybe_process_in_chunks, | |
preserve_channel_dim, | |
) | |
from ...core.bbox_utils import denormalize_bbox, normalize_bbox | |
from ...core.transforms_interface import BoxInternalType, KeypointInternalType | |
from ..geometric import functional as FGeometric | |
__all__ = [ | |
"get_random_crop_coords", | |
"random_crop", | |
"crop_bbox_by_coords", | |
"bbox_random_crop", | |
"crop_keypoint_by_coords", | |
"keypoint_random_crop", | |
"get_center_crop_coords", | |
"center_crop", | |
"bbox_center_crop", | |
"keypoint_center_crop", | |
"crop", | |
"bbox_crop", | |
"clamping_crop", | |
"crop_and_pad", | |
"crop_and_pad_bbox", | |
"crop_and_pad_keypoint", | |
] | |
def get_random_crop_coords(height: int, width: int, crop_height: int, crop_width: int, h_start: float, w_start: float): | |
# h_start is [0, 1) and should map to [0, (height - crop_height)] (note inclusive) | |
# This is conceptually equivalent to mapping onto `range(0, (height - crop_height + 1))` | |
# See: https://github.com/albumentations-team/albumentations/pull/1080 | |
y1 = int((height - crop_height + 1) * h_start) | |
y2 = y1 + crop_height | |
x1 = int((width - crop_width + 1) * w_start) | |
x2 = x1 + crop_width | |
return x1, y1, x2, y2 | |
def random_crop(img: np.ndarray, crop_height: int, crop_width: int, h_start: float, w_start: float): | |
height, width = img.shape[:2] | |
if height < crop_height or width < crop_width: | |
raise ValueError( | |
"Requested crop size ({crop_height}, {crop_width}) is " | |
"larger than the image size ({height}, {width})".format( | |
crop_height=crop_height, crop_width=crop_width, height=height, width=width | |
) | |
) | |
x1, y1, x2, y2 = get_random_crop_coords(height, width, crop_height, crop_width, h_start, w_start) | |
img = img[y1:y2, x1:x2] | |
return img | |
def crop_bbox_by_coords( | |
bbox: BoxInternalType, | |
crop_coords: Tuple[int, int, int, int], | |
crop_height: int, | |
crop_width: int, | |
rows: int, | |
cols: int, | |
): | |
"""Crop a bounding box using the provided coordinates of bottom-left and top-right corners in pixels and the | |
required height and width of the crop. | |
Args: | |
bbox (tuple): A cropped box `(x_min, y_min, x_max, y_max)`. | |
crop_coords (tuple): Crop coordinates `(x1, y1, x2, y2)`. | |
crop_height (int): | |
crop_width (int): | |
rows (int): Image rows. | |
cols (int): Image cols. | |
Returns: | |
tuple: A cropped bounding box `(x_min, y_min, x_max, y_max)`. | |
""" | |
bbox = denormalize_bbox(bbox, rows, cols) | |
x_min, y_min, x_max, y_max = bbox[:4] | |
x1, y1, _, _ = crop_coords | |
cropped_bbox = x_min - x1, y_min - y1, x_max - x1, y_max - y1 | |
return normalize_bbox(cropped_bbox, crop_height, crop_width) | |
def bbox_random_crop( | |
bbox: BoxInternalType, crop_height: int, crop_width: int, h_start: float, w_start: float, rows: int, cols: int | |
): | |
crop_coords = get_random_crop_coords(rows, cols, crop_height, crop_width, h_start, w_start) | |
return crop_bbox_by_coords(bbox, crop_coords, crop_height, crop_width, rows, cols) | |
def crop_keypoint_by_coords( | |
keypoint: KeypointInternalType, crop_coords: Tuple[int, int, int, int] | |
): # skipcq: PYL-W0613 | |
"""Crop a keypoint using the provided coordinates of bottom-left and top-right corners in pixels and the | |
required height and width of the crop. | |
Args: | |
keypoint (tuple): A keypoint `(x, y, angle, scale)`. | |
crop_coords (tuple): Crop box coords `(x1, x2, y1, y2)`. | |
Returns: | |
A keypoint `(x, y, angle, scale)`. | |
""" | |
x, y, angle, scale = keypoint[:4] | |
x1, y1, _, _ = crop_coords | |
return x - x1, y - y1, angle, scale | |
def keypoint_random_crop( | |
keypoint: KeypointInternalType, | |
crop_height: int, | |
crop_width: int, | |
h_start: float, | |
w_start: float, | |
rows: int, | |
cols: int, | |
): | |
"""Keypoint random crop. | |
Args: | |
keypoint: (tuple): A keypoint `(x, y, angle, scale)`. | |
crop_height (int): Crop height. | |
crop_width (int): Crop width. | |
h_start (int): Crop height start. | |
w_start (int): Crop width start. | |
rows (int): Image height. | |
cols (int): Image width. | |
Returns: | |
A keypoint `(x, y, angle, scale)`. | |
""" | |
crop_coords = get_random_crop_coords(rows, cols, crop_height, crop_width, h_start, w_start) | |
return crop_keypoint_by_coords(keypoint, crop_coords) | |
def get_center_crop_coords(height: int, width: int, crop_height: int, crop_width: int): | |
y1 = (height - crop_height) // 2 | |
y2 = y1 + crop_height | |
x1 = (width - crop_width) // 2 | |
x2 = x1 + crop_width | |
return x1, y1, x2, y2 | |
def center_crop(img: np.ndarray, crop_height: int, crop_width: int): | |
height, width = img.shape[:2] | |
if height < crop_height or width < crop_width: | |
raise ValueError( | |
"Requested crop size ({crop_height}, {crop_width}) is " | |
"larger than the image size ({height}, {width})".format( | |
crop_height=crop_height, crop_width=crop_width, height=height, width=width | |
) | |
) | |
x1, y1, x2, y2 = get_center_crop_coords(height, width, crop_height, crop_width) | |
img = img[y1:y2, x1:x2] | |
return img | |
def bbox_center_crop(bbox: BoxInternalType, crop_height: int, crop_width: int, rows: int, cols: int): | |
crop_coords = get_center_crop_coords(rows, cols, crop_height, crop_width) | |
return crop_bbox_by_coords(bbox, crop_coords, crop_height, crop_width, rows, cols) | |
def keypoint_center_crop(keypoint: KeypointInternalType, crop_height: int, crop_width: int, rows: int, cols: int): | |
"""Keypoint center crop. | |
Args: | |
keypoint (tuple): A keypoint `(x, y, angle, scale)`. | |
crop_height (int): Crop height. | |
crop_width (int): Crop width. | |
rows (int): Image height. | |
cols (int): Image width. | |
Returns: | |
tuple: A keypoint `(x, y, angle, scale)`. | |
""" | |
crop_coords = get_center_crop_coords(rows, cols, crop_height, crop_width) | |
return crop_keypoint_by_coords(keypoint, crop_coords) | |
def crop(img: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int): | |
height, width = img.shape[:2] | |
if x_max <= x_min or y_max <= y_min: | |
raise ValueError( | |
"We should have x_min < x_max and y_min < y_max. But we got" | |
" (x_min = {x_min}, y_min = {y_min}, x_max = {x_max}, y_max = {y_max})".format( | |
x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max | |
) | |
) | |
if x_min < 0 or x_max > width or y_min < 0 or y_max > height: | |
raise ValueError( | |
"Values for crop should be non negative and equal or smaller than image sizes" | |
"(x_min = {x_min}, y_min = {y_min}, x_max = {x_max}, y_max = {y_max}, " | |
"height = {height}, width = {width})".format( | |
x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max, height=height, width=width | |
) | |
) | |
return img[y_min:y_max, x_min:x_max] | |
def bbox_crop(bbox: BoxInternalType, x_min: int, y_min: int, x_max: int, y_max: int, rows: int, cols: int): | |
"""Crop a bounding box. | |
Args: | |
bbox (tuple): A bounding box `(x_min, y_min, x_max, y_max)`. | |
x_min (int): | |
y_min (int): | |
x_max (int): | |
y_max (int): | |
rows (int): Image rows. | |
cols (int): Image cols. | |
Returns: | |
tuple: A cropped bounding box `(x_min, y_min, x_max, y_max)`. | |
""" | |
crop_coords = x_min, y_min, x_max, y_max | |
crop_height = y_max - y_min | |
crop_width = x_max - x_min | |
return crop_bbox_by_coords(bbox, crop_coords, crop_height, crop_width, rows, cols) | |
def clamping_crop(img: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int): | |
h, w = img.shape[:2] | |
if x_min < 0: | |
x_min = 0 | |
if y_min < 0: | |
y_min = 0 | |
if y_max >= h: | |
y_max = h - 1 | |
if x_max >= w: | |
x_max = w - 1 | |
return img[int(y_min) : int(y_max), int(x_min) : int(x_max)] | |
def crop_and_pad( | |
img: np.ndarray, | |
crop_params: Optional[Sequence[int]], | |
pad_params: Optional[Sequence[int]], | |
pad_value: Optional[float], | |
rows: int, | |
cols: int, | |
interpolation: int, | |
pad_mode: int, | |
keep_size: bool, | |
) -> np.ndarray: | |
if crop_params is not None and any(i != 0 for i in crop_params): | |
img = crop(img, *crop_params) | |
if pad_params is not None and any(i != 0 for i in pad_params): | |
img = FGeometric.pad_with_params( | |
img, pad_params[0], pad_params[1], pad_params[2], pad_params[3], border_mode=pad_mode, value=pad_value | |
) | |
if keep_size: | |
resize_fn = _maybe_process_in_chunks(cv2.resize, dsize=(cols, rows), interpolation=interpolation) | |
img = resize_fn(img) | |
return img | |
def crop_and_pad_bbox( | |
bbox: BoxInternalType, | |
crop_params: Optional[Sequence[int]], | |
pad_params: Optional[Sequence[int]], | |
rows, | |
cols, | |
result_rows, | |
result_cols, | |
) -> BoxInternalType: | |
x1, y1, x2, y2 = denormalize_bbox(bbox, rows, cols)[:4] | |
if crop_params is not None: | |
crop_x, crop_y = crop_params[:2] | |
x1, y1, x2, y2 = x1 - crop_x, y1 - crop_y, x2 - crop_x, y2 - crop_y | |
if pad_params is not None: | |
top, bottom, left, right = pad_params | |
x1, y1, x2, y2 = x1 + left, y1 + top, x2 + left, y2 + top | |
return normalize_bbox((x1, y1, x2, y2), result_rows, result_cols) | |
def crop_and_pad_keypoint( | |
keypoint: KeypointInternalType, | |
crop_params: Optional[Sequence[int]], | |
pad_params: Optional[Sequence[int]], | |
rows: int, | |
cols: int, | |
result_rows: int, | |
result_cols: int, | |
keep_size: bool, | |
) -> KeypointInternalType: | |
x, y, angle, scale = keypoint[:4] | |
if crop_params is not None: | |
crop_x1, crop_y1, crop_x2, crop_y2 = crop_params | |
x, y = x - crop_x1, y - crop_y1 | |
if pad_params is not None: | |
top, bottom, left, right = pad_params | |
x, y = x + left, y + top | |
if keep_size and (result_cols != cols or result_rows != rows): | |
scale_x = cols / result_cols | |
scale_y = rows / result_rows | |
return FGeometric.keypoint_scale((x, y, angle, scale), scale_x, scale_y) | |
return x, y, angle, scale | |