Spaces:
Configuration error
Configuration error
import random | |
from typing import Any, Mapping, Tuple, Union | |
import numpy as np | |
from custom_albumentations.core.transforms_interface import ImageOnlyTransform | |
from .functional import channel_dropout | |
__all__ = ["ChannelDropout"] | |
class ChannelDropout(ImageOnlyTransform): | |
"""Randomly Drop Channels in the input Image. | |
Args: | |
channel_drop_range (int, int): range from which we choose the number of channels to drop. | |
fill_value (int, float): pixel value for the dropped channel. | |
p (float): probability of applying the transform. Default: 0.5. | |
Targets: | |
image | |
Image types: | |
uint8, uint16, unit32, float32 | |
""" | |
def __init__( | |
self, | |
channel_drop_range: Tuple[int, int] = (1, 1), | |
fill_value: Union[int, float] = 0, | |
always_apply: bool = False, | |
p: float = 0.5, | |
): | |
super(ChannelDropout, self).__init__(always_apply, p) | |
self.channel_drop_range = channel_drop_range | |
self.min_channels = channel_drop_range[0] | |
self.max_channels = channel_drop_range[1] | |
if not 1 <= self.min_channels <= self.max_channels: | |
raise ValueError("Invalid channel_drop_range. Got: {}".format(channel_drop_range)) | |
self.fill_value = fill_value | |
def apply(self, img: np.ndarray, channels_to_drop: Tuple[int, ...] = (0,), **params) -> np.ndarray: | |
return channel_dropout(img, channels_to_drop, self.fill_value) | |
def get_params_dependent_on_targets(self, params: Mapping[str, Any]): | |
img = params["image"] | |
num_channels = img.shape[-1] | |
if len(img.shape) == 2 or num_channels == 1: | |
raise NotImplementedError("Images has one channel. ChannelDropout is not defined.") | |
if self.max_channels >= num_channels: | |
raise ValueError("Can not drop all channels in ChannelDropout.") | |
num_drop_channels = random.randint(self.min_channels, self.max_channels) | |
channels_to_drop = random.sample(range(num_channels), k=num_drop_channels) | |
return {"channels_to_drop": channels_to_drop} | |
def get_transform_init_args_names(self) -> Tuple[str, ...]: | |
return "channel_drop_range", "fill_value" | |
def targets_as_params(self): | |
return ["image"] | |