JasonSmithSO's picture
Upload 777 files
0034848 verified
import random
from typing import Iterable, Optional, Tuple
import numpy as np
from ...core.transforms_interface import DualTransform
from . import functional as F
__all__ = ["GridDropout"]
class GridDropout(DualTransform):
"""GridDropout, drops out rectangular regions of an image and the corresponding mask in a grid fashion.
Args:
ratio (float): the ratio of the mask holes to the unit_size (same for horizontal and vertical directions).
Must be between 0 and 1. Default: 0.5.
unit_size_min (int): minimum size of the grid unit. Must be between 2 and the image shorter edge.
If 'None', holes_number_x and holes_number_y are used to setup the grid. Default: `None`.
unit_size_max (int): maximum size of the grid unit. Must be between 2 and the image shorter edge.
If 'None', holes_number_x and holes_number_y are used to setup the grid. Default: `None`.
holes_number_x (int): the number of grid units in x direction. Must be between 1 and image width//2.
If 'None', grid unit width is set as image_width//10. Default: `None`.
holes_number_y (int): the number of grid units in y direction. Must be between 1 and image height//2.
If `None`, grid unit height is set equal to the grid unit width or image height, whatever is smaller.
shift_x (int): offsets of the grid start in x direction from (0,0) coordinate.
Clipped between 0 and grid unit_width - hole_width. Default: 0.
shift_y (int): offsets of the grid start in y direction from (0,0) coordinate.
Clipped between 0 and grid unit height - hole_height. Default: 0.
random_offset (boolean): weather to offset the grid randomly between 0 and grid unit size - hole size
If 'True', entered shift_x, shift_y are ignored and set randomly. Default: `False`.
fill_value (int): value for the dropped pixels. Default = 0
mask_fill_value (int): value for the dropped pixels in mask.
If `None`, transformation is not applied to the mask. Default: `None`.
Targets:
image, mask
Image types:
uint8, float32
References:
https://arxiv.org/abs/2001.04086
"""
def __init__(
self,
ratio: float = 0.5,
unit_size_min: Optional[int] = None,
unit_size_max: Optional[int] = None,
holes_number_x: Optional[int] = None,
holes_number_y: Optional[int] = None,
shift_x: int = 0,
shift_y: int = 0,
random_offset: bool = False,
fill_value: int = 0,
mask_fill_value: Optional[int] = None,
always_apply: bool = False,
p: float = 0.5,
):
super(GridDropout, self).__init__(always_apply, p)
self.ratio = ratio
self.unit_size_min = unit_size_min
self.unit_size_max = unit_size_max
self.holes_number_x = holes_number_x
self.holes_number_y = holes_number_y
self.shift_x = shift_x
self.shift_y = shift_y
self.random_offset = random_offset
self.fill_value = fill_value
self.mask_fill_value = mask_fill_value
if not 0 < self.ratio <= 1:
raise ValueError("ratio must be between 0 and 1.")
def apply(self, img: np.ndarray, holes: Iterable[Tuple[int, int, int, int]] = (), **params) -> np.ndarray:
return F.cutout(img, holes, self.fill_value)
def apply_to_mask(self, img: np.ndarray, holes: Iterable[Tuple[int, int, int, int]] = (), **params) -> np.ndarray:
if self.mask_fill_value is None:
return img
return F.cutout(img, holes, self.mask_fill_value)
def get_params_dependent_on_targets(self, params):
img = params["image"]
height, width = img.shape[:2]
# set grid using unit size limits
if self.unit_size_min and self.unit_size_max:
if not 2 <= self.unit_size_min <= self.unit_size_max:
raise ValueError("Max unit size should be >= min size, both at least 2 pixels.")
if self.unit_size_max > min(height, width):
raise ValueError("Grid size limits must be within the shortest image edge.")
unit_width = random.randint(self.unit_size_min, self.unit_size_max + 1)
unit_height = unit_width
else:
# set grid using holes numbers
if self.holes_number_x is None:
unit_width = max(2, width // 10)
else:
if not 1 <= self.holes_number_x <= width // 2:
raise ValueError("The hole_number_x must be between 1 and image width//2.")
unit_width = width // self.holes_number_x
if self.holes_number_y is None:
unit_height = max(min(unit_width, height), 2)
else:
if not 1 <= self.holes_number_y <= height // 2:
raise ValueError("The hole_number_y must be between 1 and image height//2.")
unit_height = height // self.holes_number_y
hole_width = int(unit_width * self.ratio)
hole_height = int(unit_height * self.ratio)
# min 1 pixel and max unit length - 1
hole_width = min(max(hole_width, 1), unit_width - 1)
hole_height = min(max(hole_height, 1), unit_height - 1)
# set offset of the grid
if self.shift_x is None:
shift_x = 0
else:
shift_x = min(max(0, self.shift_x), unit_width - hole_width)
if self.shift_y is None:
shift_y = 0
else:
shift_y = min(max(0, self.shift_y), unit_height - hole_height)
if self.random_offset:
shift_x = random.randint(0, unit_width - hole_width)
shift_y = random.randint(0, unit_height - hole_height)
holes = []
for i in range(width // unit_width + 1):
for j in range(height // unit_height + 1):
x1 = min(shift_x + unit_width * i, width)
y1 = min(shift_y + unit_height * j, height)
x2 = min(x1 + hole_width, width)
y2 = min(y1 + hole_height, height)
holes.append((x1, y1, x2, y2))
return {"holes": holes}
@property
def targets_as_params(self):
return ["image"]
def get_transform_init_args_names(self):
return (
"ratio",
"unit_size_min",
"unit_size_max",
"holes_number_x",
"holes_number_y",
"shift_x",
"shift_y",
"random_offset",
"fill_value",
"mask_fill_value",
)