JasonSmithSO's picture
Upload 777 files
0034848 verified
import random
from typing import Dict, Sequence, Tuple, Union
import cv2
import numpy as np
from ...core.transforms_interface import (
BoxInternalType,
DualTransform,
KeypointInternalType,
to_tuple,
)
from . import functional as F
__all__ = ["RandomScale", "LongestMaxSize", "SmallestMaxSize", "Resize"]
class RandomScale(DualTransform):
"""Randomly resize the input. Output image size is different from the input image size.
Args:
scale_limit ((float, float) or float): scaling factor range. If scale_limit is a single float value, the
range will be (-scale_limit, scale_limit). Note that the scale_limit will be biased by 1.
If scale_limit is a tuple, like (low, high), sampling will be done from the range (1 + low, 1 + high).
Default: (-0.1, 0.1).
interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
Default: cv2.INTER_LINEAR.
p (float): probability of applying the transform. Default: 0.5.
Targets:
image, mask, bboxes, keypoints
Image types:
uint8, float32
"""
def __init__(self, scale_limit=0.1, interpolation=cv2.INTER_LINEAR, always_apply=False, p=0.5):
super(RandomScale, self).__init__(always_apply, p)
self.scale_limit = to_tuple(scale_limit, bias=1.0)
self.interpolation = interpolation
def get_params(self):
return {"scale": random.uniform(self.scale_limit[0], self.scale_limit[1])}
def apply(self, img, scale=0, interpolation=cv2.INTER_LINEAR, **params):
return F.scale(img, scale, interpolation)
def apply_to_bbox(self, bbox, **params):
# Bounding box coordinates are scale invariant
return bbox
def apply_to_keypoint(self, keypoint, scale=0, **params):
return F.keypoint_scale(keypoint, scale, scale)
def get_transform_init_args(self):
return {"interpolation": self.interpolation, "scale_limit": to_tuple(self.scale_limit, bias=-1.0)}
class LongestMaxSize(DualTransform):
"""Rescale an image so that maximum side is equal to max_size, keeping the aspect ratio of the initial image.
Args:
max_size (int, list of int): maximum size of the image after the transformation. When using a list, max size
will be randomly selected from the values in the list.
interpolation (OpenCV flag): interpolation method. Default: cv2.INTER_LINEAR.
p (float): probability of applying the transform. Default: 1.
Targets:
image, mask, bboxes, keypoints
Image types:
uint8, float32
"""
def __init__(
self,
max_size: Union[int, Sequence[int]] = 1024,
interpolation: int = cv2.INTER_LINEAR,
always_apply: bool = False,
p: float = 1,
):
super(LongestMaxSize, self).__init__(always_apply, p)
self.interpolation = interpolation
self.max_size = max_size
def apply(
self, img: np.ndarray, max_size: int = 1024, interpolation: int = cv2.INTER_LINEAR, **params
) -> np.ndarray:
return F.longest_max_size(img, max_size=max_size, interpolation=interpolation)
def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType:
# Bounding box coordinates are scale invariant
return bbox
def apply_to_keypoint(self, keypoint: KeypointInternalType, max_size: int = 1024, **params) -> KeypointInternalType:
height = params["rows"]
width = params["cols"]
scale = max_size / max([height, width])
return F.keypoint_scale(keypoint, scale, scale)
def get_params(self) -> Dict[str, int]:
return {"max_size": self.max_size if isinstance(self.max_size, int) else random.choice(self.max_size)}
def get_transform_init_args_names(self) -> Tuple[str, ...]:
return ("max_size", "interpolation")
class SmallestMaxSize(DualTransform):
"""Rescale an image so that minimum side is equal to max_size, keeping the aspect ratio of the initial image.
Args:
max_size (int, list of int): maximum size of smallest side of the image after the transformation. When using a
list, max size will be randomly selected from the values in the list.
interpolation (OpenCV flag): interpolation method. Default: cv2.INTER_LINEAR.
p (float): probability of applying the transform. Default: 1.
Targets:
image, mask, bboxes, keypoints
Image types:
uint8, float32
"""
def __init__(
self,
max_size: Union[int, Sequence[int]] = 1024,
interpolation: int = cv2.INTER_LINEAR,
always_apply: bool = False,
p: float = 1,
):
super(SmallestMaxSize, self).__init__(always_apply, p)
self.interpolation = interpolation
self.max_size = max_size
def apply(
self, img: np.ndarray, max_size: int = 1024, interpolation: int = cv2.INTER_LINEAR, **params
) -> np.ndarray:
return F.smallest_max_size(img, max_size=max_size, interpolation=interpolation)
def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType:
return bbox
def apply_to_keypoint(self, keypoint: KeypointInternalType, max_size: int = 1024, **params) -> KeypointInternalType:
height = params["rows"]
width = params["cols"]
scale = max_size / min([height, width])
return F.keypoint_scale(keypoint, scale, scale)
def get_params(self) -> Dict[str, int]:
return {"max_size": self.max_size if isinstance(self.max_size, int) else random.choice(self.max_size)}
def get_transform_init_args_names(self) -> Tuple[str, ...]:
return ("max_size", "interpolation")
class Resize(DualTransform):
"""Resize the input to the given height and width.
Args:
height (int): desired height of the output.
width (int): desired width of the output.
interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of:
cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4.
Default: cv2.INTER_LINEAR.
p (float): probability of applying the transform. Default: 1.
Targets:
image, mask, bboxes, keypoints
Image types:
uint8, float32
"""
def __init__(self, height, width, interpolation=cv2.INTER_LINEAR, always_apply=False, p=1):
super(Resize, self).__init__(always_apply, p)
self.height = height
self.width = width
self.interpolation = interpolation
def apply(self, img, interpolation=cv2.INTER_LINEAR, **params):
return F.resize(img, height=self.height, width=self.width, interpolation=interpolation)
def apply_to_bbox(self, bbox, **params):
# Bounding box coordinates are scale invariant
return bbox
def apply_to_keypoint(self, keypoint, **params):
height = params["rows"]
width = params["cols"]
scale_x = self.width / width
scale_y = self.height / height
return F.keypoint_scale(keypoint, scale_x, scale_y)
def get_transform_init_args_names(self):
return ("height", "width", "interpolation")