Spaces:
Configuration error
Configuration error
import torch | |
import torchvision.transforms.functional as F | |
try: | |
from torchvision.transforms.functional import InterpolationMode | |
has_interpolation_mode = True | |
except ImportError: | |
has_interpolation_mode = False | |
from PIL import Image | |
import warnings | |
import math | |
import random | |
import numpy as np | |
class ToNumpy: | |
def __call__(self, pil_img): | |
np_img = np.array(pil_img, dtype=np.uint8) | |
if np_img.ndim < 3: | |
np_img = np.expand_dims(np_img, axis=-1) | |
np_img = np.rollaxis(np_img, 2) # HWC to CHW | |
return np_img | |
class ToTensor: | |
def __init__(self, dtype=torch.float32): | |
self.dtype = dtype | |
def __call__(self, pil_img): | |
np_img = np.array(pil_img, dtype=np.uint8) | |
if np_img.ndim < 3: | |
np_img = np.expand_dims(np_img, axis=-1) | |
np_img = np.rollaxis(np_img, 2) # HWC to CHW | |
return torch.from_numpy(np_img).to(dtype=self.dtype) | |
# Pillow is deprecating the top-level resampling attributes (e.g., Image.BILINEAR) in | |
# favor of the Image.Resampling enum. The top-level resampling attributes will be | |
# removed in Pillow 10. | |
if hasattr(Image, "Resampling"): | |
_pil_interpolation_to_str = { | |
Image.Resampling.NEAREST: 'nearest', | |
Image.Resampling.BILINEAR: 'bilinear', | |
Image.Resampling.BICUBIC: 'bicubic', | |
Image.Resampling.BOX: 'box', | |
Image.Resampling.HAMMING: 'hamming', | |
Image.Resampling.LANCZOS: 'lanczos', | |
} | |
else: | |
_pil_interpolation_to_str = { | |
Image.NEAREST: 'nearest', | |
Image.BILINEAR: 'bilinear', | |
Image.BICUBIC: 'bicubic', | |
Image.BOX: 'box', | |
Image.HAMMING: 'hamming', | |
Image.LANCZOS: 'lanczos', | |
} | |
_str_to_pil_interpolation = {b: a for a, b in _pil_interpolation_to_str.items()} | |
if has_interpolation_mode: | |
_torch_interpolation_to_str = { | |
InterpolationMode.NEAREST: 'nearest', | |
InterpolationMode.BILINEAR: 'bilinear', | |
InterpolationMode.BICUBIC: 'bicubic', | |
InterpolationMode.BOX: 'box', | |
InterpolationMode.HAMMING: 'hamming', | |
InterpolationMode.LANCZOS: 'lanczos', | |
} | |
_str_to_torch_interpolation = {b: a for a, b in _torch_interpolation_to_str.items()} | |
else: | |
_pil_interpolation_to_torch = {} | |
_torch_interpolation_to_str = {} | |
def str_to_pil_interp(mode_str): | |
return _str_to_pil_interpolation[mode_str] | |
def str_to_interp_mode(mode_str): | |
if has_interpolation_mode: | |
return _str_to_torch_interpolation[mode_str] | |
else: | |
return _str_to_pil_interpolation[mode_str] | |
def interp_mode_to_str(mode): | |
if has_interpolation_mode: | |
return _torch_interpolation_to_str[mode] | |
else: | |
return _pil_interpolation_to_str[mode] | |
_RANDOM_INTERPOLATION = (str_to_interp_mode('bilinear'), str_to_interp_mode('bicubic')) | |
class RandomResizedCropAndInterpolation: | |
"""Crop the given PIL Image to random size and aspect ratio with random interpolation. | |
A crop of random size (default: of 0.08 to 1.0) of the original size and a random | |
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop | |
is finally resized to given size. | |
This is popularly used to train the Inception networks. | |
Args: | |
size: expected output size of each edge | |
scale: range of size of the origin size cropped | |
ratio: range of aspect ratio of the origin aspect ratio cropped | |
interpolation: Default: PIL.Image.BILINEAR | |
""" | |
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), | |
interpolation='bilinear'): | |
if isinstance(size, (list, tuple)): | |
self.size = tuple(size) | |
else: | |
self.size = (size, size) | |
if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): | |
warnings.warn("range should be of kind (min, max)") | |
if interpolation == 'random': | |
self.interpolation = _RANDOM_INTERPOLATION | |
else: | |
self.interpolation = str_to_interp_mode(interpolation) | |
self.scale = scale | |
self.ratio = ratio | |
def get_params(img, scale, ratio): | |
"""Get parameters for ``crop`` for a random sized crop. | |
Args: | |
img (PIL Image): Image to be cropped. | |
scale (tuple): range of size of the origin size cropped | |
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped | |
Returns: | |
tuple: params (i, j, h, w) to be passed to ``crop`` for a random | |
sized crop. | |
""" | |
area = img.size[0] * img.size[1] | |
for attempt in range(10): | |
target_area = random.uniform(*scale) * area | |
log_ratio = (math.log(ratio[0]), math.log(ratio[1])) | |
aspect_ratio = math.exp(random.uniform(*log_ratio)) | |
w = int(round(math.sqrt(target_area * aspect_ratio))) | |
h = int(round(math.sqrt(target_area / aspect_ratio))) | |
if w <= img.size[0] and h <= img.size[1]: | |
i = random.randint(0, img.size[1] - h) | |
j = random.randint(0, img.size[0] - w) | |
return i, j, h, w | |
# Fallback to central crop | |
in_ratio = img.size[0] / img.size[1] | |
if in_ratio < min(ratio): | |
w = img.size[0] | |
h = int(round(w / min(ratio))) | |
elif in_ratio > max(ratio): | |
h = img.size[1] | |
w = int(round(h * max(ratio))) | |
else: # whole image | |
w = img.size[0] | |
h = img.size[1] | |
i = (img.size[1] - h) // 2 | |
j = (img.size[0] - w) // 2 | |
return i, j, h, w | |
def __call__(self, img): | |
""" | |
Args: | |
img (PIL Image): Image to be cropped and resized. | |
Returns: | |
PIL Image: Randomly cropped and resized image. | |
""" | |
i, j, h, w = self.get_params(img, self.scale, self.ratio) | |
if isinstance(self.interpolation, (tuple, list)): | |
interpolation = random.choice(self.interpolation) | |
else: | |
interpolation = self.interpolation | |
return F.resized_crop(img, i, j, h, w, self.size, interpolation) | |
def __repr__(self): | |
if isinstance(self.interpolation, (tuple, list)): | |
interpolate_str = ' '.join([interp_mode_to_str(x) for x in self.interpolation]) | |
else: | |
interpolate_str = interp_mode_to_str(self.interpolation) | |
format_string = self.__class__.__name__ + '(size={0}'.format(self.size) | |
format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) | |
format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) | |
format_string += ', interpolation={0})'.format(interpolate_str) | |
return format_string | |