Spaces:
Configuration error
Configuration error
""" Conv2d + BN + Act | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import functools | |
from torch import nn as nn | |
from .create_conv2d import create_conv2d | |
from .create_norm_act import get_norm_act_layer | |
class ConvNormAct(nn.Module): | |
def __init__( | |
self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1, | |
bias=False, apply_act=True, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, drop_layer=None): | |
super(ConvNormAct, self).__init__() | |
self.conv = create_conv2d( | |
in_channels, out_channels, kernel_size, stride=stride, | |
padding=padding, dilation=dilation, groups=groups, bias=bias) | |
# NOTE for backwards compatibility with models that use separate norm and act layer definitions | |
norm_act_layer = get_norm_act_layer(norm_layer, act_layer) | |
# NOTE for backwards (weight) compatibility, norm layer name remains `.bn` | |
norm_kwargs = dict(drop_layer=drop_layer) if drop_layer is not None else {} | |
self.bn = norm_act_layer(out_channels, apply_act=apply_act, **norm_kwargs) | |
def in_channels(self): | |
return self.conv.in_channels | |
def out_channels(self): | |
return self.conv.out_channels | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
return x | |
ConvBnAct = ConvNormAct | |
def create_aa(aa_layer, channels, stride=2, enable=True): | |
if not aa_layer or not enable: | |
return nn.Identity() | |
if isinstance(aa_layer, functools.partial): | |
if issubclass(aa_layer.func, nn.AvgPool2d): | |
return aa_layer() | |
else: | |
return aa_layer(channels) | |
elif issubclass(aa_layer, nn.AvgPool2d): | |
return aa_layer(stride) | |
else: | |
return aa_layer(channels=channels, stride=stride) | |
class ConvNormActAa(nn.Module): | |
def __init__( | |
self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1, | |
bias=False, apply_act=True, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, aa_layer=None, drop_layer=None): | |
super(ConvNormActAa, self).__init__() | |
use_aa = aa_layer is not None and stride == 2 | |
self.conv = create_conv2d( | |
in_channels, out_channels, kernel_size, stride=1 if use_aa else stride, | |
padding=padding, dilation=dilation, groups=groups, bias=bias) | |
# NOTE for backwards compatibility with models that use separate norm and act layer definitions | |
norm_act_layer = get_norm_act_layer(norm_layer, act_layer) | |
# NOTE for backwards (weight) compatibility, norm layer name remains `.bn` | |
norm_kwargs = dict(drop_layer=drop_layer) if drop_layer is not None else {} | |
self.bn = norm_act_layer(out_channels, apply_act=apply_act, **norm_kwargs) | |
self.aa = create_aa(aa_layer, out_channels, stride=stride, enable=use_aa) | |
def in_channels(self): | |
return self.conv.in_channels | |
def out_channels(self): | |
return self.conv.out_channels | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
x = self.aa(x) | |
return x | |