Spaces:
Configuration error
Configuration error
""" Lambda Layer | |
Paper: `LambdaNetworks: Modeling Long-Range Interactions Without Attention` | |
- https://arxiv.org/abs/2102.08602 | |
@misc{2102.08602, | |
Author = {Irwan Bello}, | |
Title = {LambdaNetworks: Modeling Long-Range Interactions Without Attention}, | |
Year = {2021}, | |
} | |
Status: | |
This impl is a WIP. Code snippets in the paper were used as reference but | |
good chance some details are missing/wrong. | |
I've only implemented local lambda conv based pos embeddings. | |
For a PyTorch impl that includes other embedding options checkout | |
https://github.com/lucidrains/lambda-networks | |
Hacked together by / Copyright 2021 Ross Wightman | |
""" | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from .helpers import to_2tuple, make_divisible | |
from .weight_init import trunc_normal_ | |
def rel_pos_indices(size): | |
size = to_2tuple(size) | |
pos = torch.stack(torch.meshgrid(torch.arange(size[0]), torch.arange(size[1]))).flatten(1) | |
rel_pos = pos[:, None, :] - pos[:, :, None] | |
rel_pos[0] += size[0] - 1 | |
rel_pos[1] += size[1] - 1 | |
return rel_pos # 2, H * W, H * W | |
class LambdaLayer(nn.Module): | |
"""Lambda Layer | |
Paper: `LambdaNetworks: Modeling Long-Range Interactions Without Attention` | |
- https://arxiv.org/abs/2102.08602 | |
NOTE: intra-depth parameter 'u' is fixed at 1. It did not appear worth the complexity to add. | |
The internal dimensions of the lambda module are controlled via the interaction of several arguments. | |
* the output dimension of the module is specified by dim_out, which falls back to input dim if not set | |
* the value (v) dimension is set to dim_out // num_heads, the v projection determines the output dim | |
* the query (q) and key (k) dimension are determined by | |
* dim_head = (dim_out * attn_ratio // num_heads) if dim_head is None | |
* q = num_heads * dim_head, k = dim_head | |
* as seen above, attn_ratio determines the ratio of q and k relative to the output if dim_head not set | |
Args: | |
dim (int): input dimension to the module | |
dim_out (int): output dimension of the module, same as dim if not set | |
feat_size (Tuple[int, int]): size of input feature_map for relative pos variant H, W | |
stride (int): output stride of the module, avg pool used if stride == 2 | |
num_heads (int): parallel attention heads. | |
dim_head (int): dimension of query and key heads, calculated from dim_out * attn_ratio // num_heads if not set | |
r (int): local lambda convolution radius. Use lambda conv if set, else relative pos if not. (default: 9) | |
qk_ratio (float): ratio of q and k dimensions to output dimension when dim_head not set. (default: 1.0) | |
qkv_bias (bool): add bias to q, k, and v projections | |
""" | |
def __init__( | |
self, dim, dim_out=None, feat_size=None, stride=1, num_heads=4, dim_head=16, r=9, | |
qk_ratio=1.0, qkv_bias=False): | |
super().__init__() | |
dim_out = dim_out or dim | |
assert dim_out % num_heads == 0, ' should be divided by num_heads' | |
self.dim_qk = dim_head or make_divisible(dim_out * qk_ratio, divisor=8) // num_heads | |
self.num_heads = num_heads | |
self.dim_v = dim_out // num_heads | |
self.qkv = nn.Conv2d( | |
dim, | |
num_heads * self.dim_qk + self.dim_qk + self.dim_v, | |
kernel_size=1, bias=qkv_bias) | |
self.norm_q = nn.BatchNorm2d(num_heads * self.dim_qk) | |
self.norm_v = nn.BatchNorm2d(self.dim_v) | |
if r is not None: | |
# local lambda convolution for pos | |
self.conv_lambda = nn.Conv3d(1, self.dim_qk, (r, r, 1), padding=(r // 2, r // 2, 0)) | |
self.pos_emb = None | |
self.rel_pos_indices = None | |
else: | |
# relative pos embedding | |
assert feat_size is not None | |
feat_size = to_2tuple(feat_size) | |
rel_size = [2 * s - 1 for s in feat_size] | |
self.conv_lambda = None | |
self.pos_emb = nn.Parameter(torch.zeros(rel_size[0], rel_size[1], self.dim_qk)) | |
self.register_buffer('rel_pos_indices', rel_pos_indices(feat_size), persistent=False) | |
self.pool = nn.AvgPool2d(2, 2) if stride == 2 else nn.Identity() | |
self.reset_parameters() | |
def reset_parameters(self): | |
trunc_normal_(self.qkv.weight, std=self.qkv.weight.shape[1] ** -0.5) # fan-in | |
if self.conv_lambda is not None: | |
trunc_normal_(self.conv_lambda.weight, std=self.dim_qk ** -0.5) | |
if self.pos_emb is not None: | |
trunc_normal_(self.pos_emb, std=.02) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
M = H * W | |
qkv = self.qkv(x) | |
q, k, v = torch.split(qkv, [ | |
self.num_heads * self.dim_qk, self.dim_qk, self.dim_v], dim=1) | |
q = self.norm_q(q).reshape(B, self.num_heads, self.dim_qk, M).transpose(-1, -2) # B, num_heads, M, K | |
v = self.norm_v(v).reshape(B, self.dim_v, M).transpose(-1, -2) # B, M, V | |
k = F.softmax(k.reshape(B, self.dim_qk, M), dim=-1) # B, K, M | |
content_lam = k @ v # B, K, V | |
content_out = q @ content_lam.unsqueeze(1) # B, num_heads, M, V | |
if self.pos_emb is None: | |
position_lam = self.conv_lambda(v.reshape(B, 1, H, W, self.dim_v)) # B, H, W, V, K | |
position_lam = position_lam.reshape(B, 1, self.dim_qk, H * W, self.dim_v).transpose(2, 3) # B, 1, M, K, V | |
else: | |
# FIXME relative pos embedding path not fully verified | |
pos_emb = self.pos_emb[self.rel_pos_indices[0], self.rel_pos_indices[1]].expand(B, -1, -1, -1) | |
position_lam = (pos_emb.transpose(-1, -2) @ v.unsqueeze(1)).unsqueeze(1) # B, 1, M, K, V | |
position_out = (q.unsqueeze(-2) @ position_lam).squeeze(-2) # B, num_heads, M, V | |
out = (content_out + position_out).transpose(-1, -2).reshape(B, C, H, W) # B, C (num_heads * V), H, W | |
out = self.pool(out) | |
return out | |