from comfy.model_detection import * import comfy.model_detection as model_detection import comfy.supported_models class Kolors(comfy.supported_models.SDXL): unet_config = { "model_channels": 320, "use_linear_in_transformer": True, "transformer_depth": [0, 0, 2, 2, 10, 10], "context_dim": 2048, "adm_in_channels": 5632, "use_temporal_attention": False, } def kolors_unet_config_from_diffusers_unet(state_dict, dtype=None): match = {} transformer_depth = [] attn_res = 1 down_blocks = count_blocks(state_dict, "down_blocks.{}") for i in range(down_blocks): attn_blocks = count_blocks( state_dict, "down_blocks.{}.attentions.".format(i) + '{}') res_blocks = count_blocks( state_dict, "down_blocks.{}.resnets.".format(i) + '{}') for ab in range(attn_blocks): transformer_count = count_blocks( state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}') transformer_depth.append(transformer_count) if transformer_count > 0: match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format( i, ab)].shape[1] attn_res *= 2 if attn_blocks == 0: for i in range(res_blocks): transformer_depth.append(0) match["transformer_depth"] = transformer_depth match["model_channels"] = state_dict["conv_in.weight"].shape[0] match["in_channels"] = state_dict["conv_in.weight"].shape[1] match["adm_in_channels"] = None if "class_embedding.linear_1.weight" in state_dict: match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1] elif "add_embedding.linear_1.weight" in state_dict: match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1] Kolors = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 5632, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], 'use_temporal_attention': False, 'use_temporal_resblock': False} supported_models = [Kolors] for unet_config in supported_models: matches = True for k in match: if match[k] != unet_config[k]: print("key {} does not match".format( k), match[k], "||", unet_config[k]) matches = False break if matches: return convert_config(unet_config) return None class apply_kolors: def __enter__(self): import comfy.supported_models self.old_supported_models = comfy.supported_models.models comfy.supported_models.models = [Kolors] self.old_unet_config_from_diffusers_unet = model_detection.unet_config_from_diffusers_unet model_detection.unet_config_from_diffusers_unet = kolors_unet_config_from_diffusers_unet def __exit__(self, type, value, traceback): model_detection.unet_config_from_diffusers_unet = self.old_unet_config_from_diffusers_unet import comfy.supported_models comfy.supported_models.models = self.old_supported_models