# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import torch import torch.nn as nn from tqdm import tqdm from timm.models.layers import DropPath from timm.models.vision_transformer import Mlp from .utils import auto_grad_checkpoint, to_2tuple from .PixArt_blocks import t2i_modulate, CaptionEmbedder, AttentionKVCompress, MultiHeadCrossAttention, T2IFinalLayer, TimestepEmbedder, SizeEmbedder from .PixArt import PixArt, get_2d_sincos_pos_embed class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding """ def __init__( self, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, bias=True, ): super().__init__() patch_size = to_2tuple(patch_size) self.patch_size = patch_size self.flatten = flatten self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x class PixArtMSBlock(nn.Module): """ A PixArt block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0., input_size=None, sampling=None, sr_ratio=1, qk_norm=False, **block_kwargs): super().__init__() self.hidden_size = hidden_size self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = AttentionKVCompress( hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio, qk_norm=qk_norm, **block_kwargs ) self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) # to be compatible with lower version pytorch approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp(in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5) def forward(self, x, y, t, mask=None, HW=None, **kwargs): B, N, C = x.shape shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1) x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa), HW=HW)) x = x + self.cross_attn(x, y, mask) x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) return x ### Core PixArt Model ### class PixArtMS(PixArt): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, learn_sigma=True, pred_sigma=True, drop_path: float = 0., caption_channels=4096, pe_interpolation=None, pe_precision=None, config=None, model_max_length=120, micro_condition=True, qk_norm=False, kv_compress_config=None, **kwargs, ): super().__init__( input_size=input_size, patch_size=patch_size, in_channels=in_channels, hidden_size=hidden_size, depth=depth, num_heads=num_heads, mlp_ratio=mlp_ratio, class_dropout_prob=class_dropout_prob, learn_sigma=learn_sigma, pred_sigma=pred_sigma, drop_path=drop_path, pe_interpolation=pe_interpolation, config=config, model_max_length=model_max_length, qk_norm=qk_norm, kv_compress_config=kv_compress_config, **kwargs, ) self.dtype = torch.get_default_dtype() self.h = self.w = 0 approx_gelu = lambda: nn.GELU(approximate="tanh") self.t_block = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) self.x_embedder = PatchEmbed(patch_size, in_channels, hidden_size, bias=True) self.y_embedder = CaptionEmbedder(in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, act_layer=approx_gelu, token_num=model_max_length) self.micro_conditioning = micro_condition if self.micro_conditioning: self.csize_embedder = SizeEmbedder(hidden_size//3) # c_size embed self.ar_embedder = SizeEmbedder(hidden_size//3) # aspect ratio embed drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule if kv_compress_config is None: kv_compress_config = { 'sampling': None, 'scale_factor': 1, 'kv_compress_layer': [], } self.blocks = nn.ModuleList([ PixArtMSBlock( hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i], input_size=(input_size // patch_size, input_size // patch_size), sampling=kv_compress_config['sampling'], sr_ratio=int(kv_compress_config['scale_factor']) if i in kv_compress_config['kv_compress_layer'] else 1, qk_norm=qk_norm, ) for i in range(depth) ]) self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels) def forward_raw(self, x, t, y, mask=None, data_info=None, **kwargs): """ Original forward pass of PixArt. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N, 1, 120, C) tensor of class labels """ bs = x.shape[0] x = x.to(self.dtype) timestep = t.to(self.dtype) y = y.to(self.dtype) pe_interpolation = self.pe_interpolation if pe_interpolation is None or self.pe_precision is not None: # calculate pe_interpolation on-the-fly pe_interpolation = round((x.shape[-1]+x.shape[-2])/2.0 / (512/8.0), self.pe_precision or 0) self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size pos_embed = torch.from_numpy( get_2d_sincos_pos_embed( self.pos_embed.shape[-1], (self.h, self.w), pe_interpolation=pe_interpolation, base_size=self.base_size ) ).unsqueeze(0).to(device=x.device, dtype=self.dtype) x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(timestep) # (N, D) if self.micro_conditioning: c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype) csize = self.csize_embedder(c_size, bs) # (N, D) ar = self.ar_embedder(ar, bs) # (N, D) t = t + torch.cat([csize, ar], dim=1) t0 = self.t_block(t) y = self.y_embedder(y, self.training) # (N, D) if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) for block in self.blocks: x = auto_grad_checkpoint(block, x, y, t0, y_lens, (self.h, self.w), **kwargs) # (N, T, D) #support grad checkpoint x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) return x def forward(self, x, timesteps, context, img_hw=None, aspect_ratio=None, **kwargs): """ Forward pass that adapts comfy input to original forward function x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) timesteps: (N,) tensor of diffusion timesteps context: (N, 1, 120, C) conditioning img_hw: height|width conditioning aspect_ratio: aspect ratio conditioning """ ## size/ar from cond with fallback based on the latent image shape. bs = x.shape[0] data_info = {} if img_hw is None: data_info["img_hw"] = torch.tensor( [[x.shape[2]*8, x.shape[3]*8]], dtype=self.dtype, device=x.device ).repeat(bs, 1) else: data_info["img_hw"] = img_hw.to(dtype=x.dtype, device=x.device) if aspect_ratio is None or True: data_info["aspect_ratio"] = torch.tensor( [[x.shape[2]/x.shape[3]]], dtype=self.dtype, device=x.device ).repeat(bs, 1) else: data_info["aspect_ratio"] = aspect_ratio.to(dtype=x.dtype, device=x.device) ## Still accepts the input w/o that dim but returns garbage if len(context.shape) == 3: context = context.unsqueeze(1) ## run original forward pass out = self.forward_raw( x = x.to(self.dtype), t = timesteps.to(self.dtype), y = context.to(self.dtype), data_info=data_info, ) ## only return EPS out = out.to(torch.float) eps, rest = out[:, :self.in_channels], out[:, self.in_channels:] return eps def unpatchify(self, x): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] assert self.h * self.w == x.shape[1] x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p)) return imgs