import re import torch import torch.nn as nn from copy import deepcopy from torch import Tensor from torch.nn import Module, Linear, init from typing import Any, Mapping from .PixArt import PixArt, get_2d_sincos_pos_embed from .PixArtMS import PixArtMSBlock, PixArtMS from .utils import auto_grad_checkpoint # The implementation of ControlNet-Half architrecture # https://github.com/lllyasviel/ControlNet/discussions/188 class ControlT2IDitBlockHalf(Module): def __init__(self, base_block: PixArtMSBlock, block_index: 0) -> None: super().__init__() self.copied_block = deepcopy(base_block) self.block_index = block_index for p in self.copied_block.parameters(): p.requires_grad_(True) self.copied_block.load_state_dict(base_block.state_dict()) self.copied_block.train() self.hidden_size = hidden_size = base_block.hidden_size if self.block_index == 0: self.before_proj = Linear(hidden_size, hidden_size) init.zeros_(self.before_proj.weight) init.zeros_(self.before_proj.bias) self.after_proj = Linear(hidden_size, hidden_size) init.zeros_(self.after_proj.weight) init.zeros_(self.after_proj.bias) def forward(self, x, y, t, mask=None, c=None): if self.block_index == 0: # the first block c = self.before_proj(c) c = self.copied_block(x + c, y, t, mask) c_skip = self.after_proj(c) else: # load from previous c and produce the c for skip connection c = self.copied_block(c, y, t, mask) c_skip = self.after_proj(c) return c, c_skip # The implementation of ControlPixArtHalf net class ControlPixArtHalf(Module): # only support single res model def __init__(self, base_model: PixArt, copy_blocks_num: int = 13) -> None: super().__init__() self.dtype = torch.get_default_dtype() self.base_model = base_model.eval() self.controlnet = [] self.copy_blocks_num = copy_blocks_num self.total_blocks_num = len(base_model.blocks) for p in self.base_model.parameters(): p.requires_grad_(False) # Copy first copy_blocks_num block for i in range(copy_blocks_num): self.controlnet.append(ControlT2IDitBlockHalf(base_model.blocks[i], i)) self.controlnet = nn.ModuleList(self.controlnet) def __getattr__(self, name: str) -> Tensor or Module: if name in ['forward', 'forward_with_dpmsolver', 'forward_with_cfg', 'forward_c', 'load_state_dict']: return self.__dict__[name] elif name in ['base_model', 'controlnet']: return super().__getattr__(name) else: return getattr(self.base_model, name) def forward_c(self, c): self.h, self.w = c.shape[-2]//self.patch_size, c.shape[-1]//self.patch_size pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.pos_embed.shape[-1], (self.h, self.w), lewei_scale=self.lewei_scale, base_size=self.base_size)).unsqueeze(0).to(c.device).to(self.dtype) return self.x_embedder(c) + pos_embed if c is not None else c # def forward(self, x, t, c, **kwargs): # return self.base_model(x, t, c=self.forward_c(c), **kwargs) def forward_raw(self, x, timestep, y, mask=None, data_info=None, c=None, **kwargs): # modify the original PixArtMS forward function if c is not None: c = c.to(self.dtype) c = self.forward_c(c) """ Forward pass of PixArt. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N, 1, 120, C) tensor of class labels """ x = x.to(self.dtype) timestep = timestep.to(self.dtype) y = y.to(self.dtype) pos_embed = self.pos_embed.to(self.dtype) self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(timestep.to(x.dtype)) # (N, D) t0 = self.t_block(t) y = self.y_embedder(y, self.training) # (N, 1, L, D) if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) # define the first layer x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs) # (N, T, D) #support grad checkpoint if c is not None: # update c for index in range(1, self.copy_blocks_num + 1): c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs) x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs) # update x for index in range(self.copy_blocks_num + 1, self.total_blocks_num): x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs) else: for index in range(1, self.total_blocks_num): x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs) x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) return x def forward(self, x, timesteps, context, cn_hint=None, **kwargs): """ Forward pass that adapts comfy input to original forward function x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) timesteps: (N,) tensor of diffusion timesteps context: (N, 1, 120, C) conditioning cn_hint: controlnet hint """ ## Still accepts the input w/o that dim but returns garbage if len(context.shape) == 3: context = context.unsqueeze(1) ## run original forward pass out = self.forward_raw( x = x.to(self.dtype), timestep = timesteps.to(self.dtype), y = context.to(self.dtype), c = cn_hint, ) ## only return EPS out = out.to(torch.float) eps, rest = out[:, :self.in_channels], out[:, self.in_channels:] return eps def forward_with_dpmsolver(self, x, t, y, data_info, c, **kwargs): model_out = self.forward_raw(x, t, y, data_info=data_info, c=c, **kwargs) return model_out.chunk(2, dim=1)[0] # def forward_with_dpmsolver(self, x, t, y, data_info, c, **kwargs): # return self.base_model.forward_with_dpmsolver(x, t, y, data_info=data_info, c=self.forward_c(c), **kwargs) def forward_with_cfg(self, x, t, y, cfg_scale, data_info, c, **kwargs): return self.base_model.forward_with_cfg(x, t, y, cfg_scale, data_info, c=self.forward_c(c), **kwargs) def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): if all((k.startswith('base_model') or k.startswith('controlnet')) for k in state_dict.keys()): return super().load_state_dict(state_dict, strict) else: new_key = {} for k in state_dict.keys(): new_key[k] = re.sub(r"(blocks\.\d+)(.*)", r"\1.base_block\2", k) for k, v in new_key.items(): if k != v: print(f"replace {k} to {v}") state_dict[v] = state_dict.pop(k) return self.base_model.load_state_dict(state_dict, strict) def unpatchify(self, x): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] assert self.h * self.w == x.shape[1] x = x.reshape(shape=(x.shape[0], self.h, self.w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], c, self.h * p, self.w * p)) return imgs # @property # def dtype(self): ## 返回模型参数的数据类型 # return next(self.parameters()).dtype # The implementation for PixArtMS_Half + 1024 resolution class ControlPixArtMSHalf(ControlPixArtHalf): # support multi-scale res model (multi-scale model can also be applied to single reso training & inference) def __init__(self, base_model: PixArtMS, copy_blocks_num: int = 13) -> None: super().__init__(base_model=base_model, copy_blocks_num=copy_blocks_num) def forward_raw(self, x, timestep, y, mask=None, data_info=None, c=None, **kwargs): # modify the original PixArtMS forward function """ Forward pass of PixArt. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N, 1, 120, C) tensor of class labels """ if c is not None: c = c.to(self.dtype) c = self.forward_c(c) bs = x.shape[0] x = x.to(self.dtype) timestep = timestep.to(self.dtype) y = y.to(self.dtype) c_size, ar = data_info['img_hw'].to(self.dtype), data_info['aspect_ratio'].to(self.dtype) self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.pos_embed.shape[-1], (self.h, self.w), lewei_scale=self.lewei_scale, base_size=self.base_size)).unsqueeze(0).to(x.device).to(self.dtype) x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(timestep) # (N, D) csize = self.csize_embedder(c_size, bs) # (N, D) ar = self.ar_embedder(ar, bs) # (N, D) t = t + torch.cat([csize, ar], dim=1) t0 = self.t_block(t) y = self.y_embedder(y, self.training) # (N, D) if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) # define the first layer x = auto_grad_checkpoint(self.base_model.blocks[0], x, y, t0, y_lens, **kwargs) # (N, T, D) #support grad checkpoint if c is not None: # update c for index in range(1, self.copy_blocks_num + 1): c, c_skip = auto_grad_checkpoint(self.controlnet[index - 1], x, y, t0, y_lens, c, **kwargs) x = auto_grad_checkpoint(self.base_model.blocks[index], x + c_skip, y, t0, y_lens, **kwargs) # update x for index in range(self.copy_blocks_num + 1, self.total_blocks_num): x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs) else: for index in range(1, self.total_blocks_num): x = auto_grad_checkpoint(self.base_model.blocks[index], x, y, t0, y_lens, **kwargs) x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) return x def forward(self, x, timesteps, context, img_hw=None, aspect_ratio=None, cn_hint=None, **kwargs): """ Forward pass that adapts comfy input to original forward function x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) timesteps: (N,) tensor of diffusion timesteps context: (N, 1, 120, C) conditioning img_hw: height|width conditioning aspect_ratio: aspect ratio conditioning cn_hint: controlnet hint """ ## size/ar from cond with fallback based on the latent image shape. bs = x.shape[0] data_info = {} if img_hw is None: data_info["img_hw"] = torch.tensor( [[x.shape[2]*8, x.shape[3]*8]], dtype=self.dtype, device=x.device ).repeat(bs, 1) else: data_info["img_hw"] = img_hw.to(x.dtype) if aspect_ratio is None or True: data_info["aspect_ratio"] = torch.tensor( [[x.shape[2]/x.shape[3]]], dtype=self.dtype, device=x.device ).repeat(bs, 1) else: data_info["aspect_ratio"] = aspect_ratio.to(x.dtype) ## Still accepts the input w/o that dim but returns garbage if len(context.shape) == 3: context = context.unsqueeze(1) ## run original forward pass out = self.forward_raw( x = x.to(self.dtype), timestep = timesteps.to(self.dtype), y = context.to(self.dtype), c = cn_hint, data_info=data_info, ) ## only return EPS out = out.to(torch.float) eps, rest = out[:, :self.in_channels], out[:, self.in_channels:] return eps