import random import warnings from typing import Any, Dict, List, Sequence, Tuple import cv2 import numpy as np from custom_albumentations import random_utils from custom_albumentations.augmentations import functional as FMain from custom_albumentations.augmentations.blur import functional as F from custom_albumentations.core.transforms_interface import ( ImageOnlyTransform, ScaleFloatType, ScaleIntType, to_tuple, ) __all__ = ["Blur", "MotionBlur", "GaussianBlur", "GlassBlur", "AdvancedBlur", "MedianBlur", "Defocus", "ZoomBlur"] class Blur(ImageOnlyTransform): """Blur the input image using a random-sized kernel. Args: blur_limit (int, (int, int)): maximum kernel size for blurring the input image. Should be in range [3, inf). Default: (3, 7). p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__(self, blur_limit: ScaleIntType = 7, always_apply: bool = False, p: float = 0.5): super().__init__(always_apply, p) self.blur_limit = to_tuple(blur_limit, 3) def apply(self, img: np.ndarray, ksize: int = 3, **params) -> np.ndarray: return F.blur(img, ksize) def get_params(self) -> Dict[str, Any]: return {"ksize": int(random.choice(list(range(self.blur_limit[0], self.blur_limit[1] + 1, 2))))} def get_transform_init_args_names(self) -> Tuple[str, ...]: return ("blur_limit",) class MotionBlur(Blur): """Apply motion blur to the input image using a random-sized kernel. Args: blur_limit (int): maximum kernel size for blurring the input image. Should be in range [3, inf). Default: (3, 7). allow_shifted (bool): if set to true creates non shifted kernels only, otherwise creates randomly shifted kernels. Default: True. p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__( self, blur_limit: ScaleIntType = 7, allow_shifted: bool = True, always_apply: bool = False, p: float = 0.5, ): super().__init__(blur_limit=blur_limit, always_apply=always_apply, p=p) self.allow_shifted = allow_shifted if not allow_shifted and self.blur_limit[0] % 2 != 1 or self.blur_limit[1] % 2 != 1: raise ValueError(f"Blur limit must be odd when centered=True. Got: {self.blur_limit}") def get_transform_init_args_names(self) -> Tuple[str, ...]: return super().get_transform_init_args_names() + ("allow_shifted",) def apply(self, img: np.ndarray, kernel: np.ndarray = None, **params) -> np.ndarray: # type: ignore return FMain.convolve(img, kernel=kernel) def get_params(self) -> Dict[str, Any]: ksize = random.choice(list(range(self.blur_limit[0], self.blur_limit[1] + 1, 2))) if ksize <= 2: raise ValueError("ksize must be > 2. Got: {}".format(ksize)) kernel = np.zeros((ksize, ksize), dtype=np.uint8) x1, x2 = random.randint(0, ksize - 1), random.randint(0, ksize - 1) if x1 == x2: y1, y2 = random.sample(range(ksize), 2) else: y1, y2 = random.randint(0, ksize - 1), random.randint(0, ksize - 1) def make_odd_val(v1, v2): len_v = abs(v1 - v2) + 1 if len_v % 2 != 1: if v2 > v1: v2 -= 1 else: v1 -= 1 return v1, v2 if not self.allow_shifted: x1, x2 = make_odd_val(x1, x2) y1, y2 = make_odd_val(y1, y2) xc = (x1 + x2) / 2 yc = (y1 + y2) / 2 center = ksize / 2 - 0.5 dx = xc - center dy = yc - center x1, x2 = [int(i - dx) for i in [x1, x2]] y1, y2 = [int(i - dy) for i in [y1, y2]] cv2.line(kernel, (x1, y1), (x2, y2), 1, thickness=1) # Normalize kernel return {"kernel": kernel.astype(np.float32) / np.sum(kernel)} class MedianBlur(Blur): """Blur the input image using a median filter with a random aperture linear size. Args: blur_limit (int): maximum aperture linear size for blurring the input image. Must be odd and in range [3, inf). Default: (3, 7). p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__(self, blur_limit: ScaleIntType = 7, always_apply: bool = False, p: float = 0.5): super().__init__(blur_limit, always_apply, p) if self.blur_limit[0] % 2 != 1 or self.blur_limit[1] % 2 != 1: raise ValueError("MedianBlur supports only odd blur limits.") def apply(self, img: np.ndarray, ksize: int = 3, **params) -> np.ndarray: return F.median_blur(img, ksize) class GaussianBlur(ImageOnlyTransform): """Blur the input image using a Gaussian filter with a random kernel size. Args: blur_limit (int, (int, int)): maximum Gaussian kernel size for blurring the input image. Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`. If set single value `blur_limit` will be in range (0, blur_limit). Default: (3, 7). sigma_limit (float, (float, float)): Gaussian kernel standard deviation. Must be in range [0, inf). If set single value `sigma_limit` will be in range (0, sigma_limit). If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0. p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__( self, blur_limit: ScaleIntType = (3, 7), sigma_limit: ScaleFloatType = 0, always_apply: bool = False, p: float = 0.5, ): super().__init__(always_apply, p) self.blur_limit = to_tuple(blur_limit, 0) self.sigma_limit = to_tuple(sigma_limit if sigma_limit is not None else 0, 0) if self.blur_limit[0] == 0 and self.sigma_limit[0] == 0: self.blur_limit = 3, max(3, self.blur_limit[1]) warnings.warn( "blur_limit and sigma_limit minimum value can not be both equal to 0. " "blur_limit minimum value changed to 3." ) if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or ( self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1 ): raise ValueError("GaussianBlur supports only odd blur limits.") def apply(self, img: np.ndarray, ksize: int = 3, sigma: float = 0, **params) -> np.ndarray: return F.gaussian_blur(img, ksize, sigma=sigma) def get_params(self) -> Dict[str, float]: ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1) if ksize != 0 and ksize % 2 != 1: ksize = (ksize + 1) % (self.blur_limit[1] + 1) return {"ksize": ksize, "sigma": random.uniform(*self.sigma_limit)} def get_transform_init_args_names(self) -> Tuple[str, str]: return ("blur_limit", "sigma_limit") class GlassBlur(Blur): """Apply glass noise to the input image. Args: sigma (float): standard deviation for Gaussian kernel. max_delta (int): max distance between pixels which are swapped. iterations (int): number of repeats. Should be in range [1, inf). Default: (2). mode (str): mode of computation: fast or exact. Default: "fast". p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 Reference: | https://arxiv.org/abs/1903.12261 | https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py """ def __init__( self, sigma: float = 0.7, max_delta: int = 4, iterations: int = 2, always_apply: bool = False, mode: str = "fast", p: float = 0.5, ): super().__init__(always_apply=always_apply, p=p) if iterations < 1: raise ValueError(f"Iterations should be more or equal to 1, but we got {iterations}") if mode not in ["fast", "exact"]: raise ValueError(f"Mode should be 'fast' or 'exact', but we got {mode}") self.sigma = sigma self.max_delta = max_delta self.iterations = iterations self.mode = mode def apply(self, img: np.ndarray, dxy: np.ndarray = None, **params) -> np.ndarray: # type: ignore assert dxy is not None return F.glass_blur(img, self.sigma, self.max_delta, self.iterations, dxy, self.mode) def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, np.ndarray]: img = params["image"] # generate array containing all necessary values for transformations width_pixels = img.shape[0] - self.max_delta * 2 height_pixels = img.shape[1] - self.max_delta * 2 total_pixels = width_pixels * height_pixels dxy = random_utils.randint(-self.max_delta, self.max_delta, size=(total_pixels, self.iterations, 2)) return {"dxy": dxy} def get_transform_init_args_names(self) -> Tuple[str, str, str]: return ("sigma", "max_delta", "iterations") @property def targets_as_params(self) -> List[str]: return ["image"] class AdvancedBlur(ImageOnlyTransform): """Blur the input image using a Generalized Normal filter with a randomly selected parameters. This transform also adds multiplicative noise to generated kernel before convolution. Args: blur_limit: maximum Gaussian kernel size for blurring the input image. Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`. If set single value `blur_limit` will be in range (0, blur_limit). Default: (3, 7). sigmaX_limit: Gaussian kernel standard deviation. Must be in range [0, inf). If set single value `sigmaX_limit` will be in range (0, sigma_limit). If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0. sigmaY_limit: Same as `sigmaY_limit` for another dimension. rotate_limit: Range from which a random angle used to rotate Gaussian kernel is picked. If limit is a single int an angle is picked from (-rotate_limit, rotate_limit). Default: (-90, 90). beta_limit: Distribution shape parameter, 1 is the normal distribution. Values below 1.0 make distribution tails heavier than normal, values above 1.0 make it lighter than normal. Default: (0.5, 8.0). noise_limit: Multiplicative factor that control strength of kernel noise. Must be positive and preferably centered around 1.0. If set single value `noise_limit` will be in range (0, noise_limit). Default: (0.75, 1.25). p (float): probability of applying the transform. Default: 0.5. Reference: https://arxiv.org/abs/2107.10833 Targets: image Image types: uint8, float32 """ def __init__( self, blur_limit: ScaleIntType = (3, 7), sigmaX_limit: ScaleFloatType = (0.2, 1.0), sigmaY_limit: ScaleFloatType = (0.2, 1.0), rotate_limit: ScaleIntType = 90, beta_limit: ScaleFloatType = (0.5, 8.0), noise_limit: ScaleFloatType = (0.9, 1.1), always_apply: bool = False, p: float = 0.5, ): super().__init__(always_apply, p) self.blur_limit = to_tuple(blur_limit, 3) self.sigmaX_limit = self.__check_values(to_tuple(sigmaX_limit, 0.0), name="sigmaX_limit") self.sigmaY_limit = self.__check_values(to_tuple(sigmaY_limit, 0.0), name="sigmaY_limit") self.rotate_limit = to_tuple(rotate_limit) self.beta_limit = to_tuple(beta_limit, low=0.0) self.noise_limit = self.__check_values(to_tuple(noise_limit, 0.0), name="noise_limit") if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or ( self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1 ): raise ValueError("AdvancedBlur supports only odd blur limits.") if self.sigmaX_limit[0] == 0 and self.sigmaY_limit[0] == 0: raise ValueError("sigmaX_limit and sigmaY_limit minimum value can not be both equal to 0.") if not (self.beta_limit[0] < 1.0 < self.beta_limit[1]): raise ValueError("Beta limit is expected to include 1.0") @staticmethod def __check_values( value: Sequence[float], name: str, bounds: Tuple[float, float] = (0, float("inf")) ) -> Sequence[float]: if not bounds[0] <= value[0] <= value[1] <= bounds[1]: raise ValueError(f"{name} values should be between {bounds}") return value def apply(self, img: np.ndarray, kernel: np.ndarray = np.array(None), **params) -> np.ndarray: return FMain.convolve(img, kernel=kernel) def get_params(self) -> Dict[str, np.ndarray]: ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1, 2) sigmaX = random.uniform(*self.sigmaX_limit) sigmaY = random.uniform(*self.sigmaY_limit) angle = np.deg2rad(random.uniform(*self.rotate_limit)) # Split into 2 cases to avoid selection of narrow kernels (beta > 1) too often. if random.random() < 0.5: beta = random.uniform(self.beta_limit[0], 1) else: beta = random.uniform(1, self.beta_limit[1]) noise_matrix = random_utils.uniform(self.noise_limit[0], self.noise_limit[1], size=[ksize, ksize]) # Generate mesh grid centered at zero. ax = np.arange(-ksize // 2 + 1.0, ksize // 2 + 1.0) # Shape (ksize, ksize, 2) grid = np.stack(np.meshgrid(ax, ax), axis=-1) # Calculate rotated sigma matrix d_matrix = np.array([[sigmaX**2, 0], [0, sigmaY**2]]) u_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) sigma_matrix = np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) inverse_sigma = np.linalg.inv(sigma_matrix) # Described in "Parameter Estimation For Multivariate Generalized Gaussian Distributions" kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta)) # Add noise kernel = kernel * noise_matrix # Normalize kernel kernel = kernel.astype(np.float32) / np.sum(kernel) return {"kernel": kernel} def get_transform_init_args_names(self) -> Tuple[str, str, str, str, str, str]: return ( "blur_limit", "sigmaX_limit", "sigmaY_limit", "rotate_limit", "beta_limit", "noise_limit", ) class Defocus(ImageOnlyTransform): """ Apply defocus transform. See https://arxiv.org/abs/1903.12261. Args: radius ((int, int) or int): range for radius of defocusing. If limit is a single int, the range will be [1, limit]. Default: (3, 10). alias_blur ((float, float) or float): range for alias_blur of defocusing (sigma of gaussian blur). If limit is a single float, the range will be (0, limit). Default: (0.1, 0.5). p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: Any """ def __init__( self, radius: ScaleIntType = (3, 10), alias_blur: ScaleFloatType = (0.1, 0.5), always_apply: bool = False, p: float = 0.5, ): super().__init__(always_apply, p) self.radius = to_tuple(radius, low=1) self.alias_blur = to_tuple(alias_blur, low=0) if self.radius[0] <= 0: raise ValueError("Parameter radius must be positive") if self.alias_blur[0] < 0: raise ValueError("Parameter alias_blur must be non-negative") def apply(self, img: np.ndarray, radius: int = 3, alias_blur: float = 0.5, **params) -> np.ndarray: return F.defocus(img, radius, alias_blur) def get_params(self) -> Dict[str, Any]: return { "radius": random_utils.randint(self.radius[0], self.radius[1] + 1), "alias_blur": random_utils.uniform(self.alias_blur[0], self.alias_blur[1]), } def get_transform_init_args_names(self) -> Tuple[str, str]: return ("radius", "alias_blur") class ZoomBlur(ImageOnlyTransform): """ Apply zoom blur transform. See https://arxiv.org/abs/1903.12261. Args: max_factor ((float, float) or float): range for max factor for blurring. If max_factor is a single float, the range will be (1, limit). Default: (1, 1.31). All max_factor values should be larger than 1. step_factor ((float, float) or float): If single float will be used as step parameter for np.arange. If tuple of float step_factor will be in range `[step_factor[0], step_factor[1])`. Default: (0.01, 0.03). All step_factor values should be positive. p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: Any """ def __init__( self, max_factor: ScaleFloatType = 1.31, step_factor: ScaleFloatType = (0.01, 0.03), always_apply: bool = False, p: float = 0.5, ): super().__init__(always_apply, p) self.max_factor = to_tuple(max_factor, low=1.0) self.step_factor = to_tuple(step_factor, step_factor) if self.max_factor[0] < 1: raise ValueError("Max factor must be larger or equal 1") if self.step_factor[0] <= 0: raise ValueError("Step factor must be positive") def apply(self, img: np.ndarray, zoom_factors: np.ndarray = np.array(None), **params) -> np.ndarray: assert zoom_factors is not None return F.zoom_blur(img, zoom_factors) def get_params(self) -> Dict[str, Any]: max_factor = random.uniform(self.max_factor[0], self.max_factor[1]) step_factor = random.uniform(self.step_factor[0], self.step_factor[1]) return {"zoom_factors": np.arange(1.0, max_factor, step_factor)} def get_transform_init_args_names(self) -> Tuple[str, str]: return ("max_factor", "step_factor")