from __future__ import absolute_import, division import math import numbers import random import warnings from enum import IntEnum from types import LambdaType from typing import Any, Dict, List, Optional, Sequence, Tuple, Union import cv2 import numpy as np from scipy import special from scipy.ndimage import gaussian_filter from custom_albumentations import random_utils from custom_albumentations.augmentations.blur.functional import blur from custom_albumentations.augmentations.utils import ( get_num_channels, is_grayscale_image, is_rgb_image, ) from ..core.transforms_interface import ( DualTransform, ImageOnlyTransform, NoOp, ScaleFloatType, to_tuple, ) from ..core.utils import format_args from . import functional as F __all__ = [ "Normalize", "RandomGamma", "RandomGridShuffle", "HueSaturationValue", "RGBShift", "RandomBrightness", "RandomContrast", "GaussNoise", "CLAHE", "ChannelShuffle", "InvertImg", "ToGray", "ToRGB", "ToSepia", "JpegCompression", "ImageCompression", "ToFloat", "FromFloat", "RandomBrightnessContrast", "RandomSnow", "RandomGravel", "RandomRain", "RandomFog", "RandomSunFlare", "RandomShadow", "RandomToneCurve", "Lambda", "ISONoise", "Solarize", "Equalize", "Posterize", "Downscale", "MultiplicativeNoise", "FancyPCA", "ColorJitter", "Sharpen", "Emboss", "Superpixels", "TemplateTransform", "RingingOvershoot", "UnsharpMask", "PixelDropout", "Spatter", ] class RandomGridShuffle(DualTransform): """ Random shuffle grid's cells on image. Args: grid ((int, int)): size of grid for splitting image. Targets: image, mask, keypoints Image types: uint8, float32 """ def __init__(self, grid: Tuple[int, int] = (3, 3), always_apply: bool = False, p: float = 0.5): super(RandomGridShuffle, self).__init__(always_apply, p) self.grid = grid def apply(self, img: np.ndarray, tiles: np.ndarray = np.array(None), **params): return F.swap_tiles_on_image(img, tiles) def apply_to_mask(self, img: np.ndarray, tiles: np.ndarray = np.array(None), **params): return F.swap_tiles_on_image(img, tiles) def apply_to_keypoint( self, keypoint: Tuple[float, ...], tiles: np.ndarray = np.array(None), rows: int = 0, cols: int = 0, **params ): for ( current_left_up_corner_row, current_left_up_corner_col, old_left_up_corner_row, old_left_up_corner_col, height_tile, width_tile, ) in tiles: x, y = keypoint[:2] if (old_left_up_corner_row <= y < (old_left_up_corner_row + height_tile)) and ( old_left_up_corner_col <= x < (old_left_up_corner_col + width_tile) ): x = x - old_left_up_corner_col + current_left_up_corner_col y = y - old_left_up_corner_row + current_left_up_corner_row keypoint = (x, y) + tuple(keypoint[2:]) break return keypoint def get_params_dependent_on_targets(self, params): height, width = params["image"].shape[:2] n, m = self.grid if n <= 0 or m <= 0: raise ValueError("Grid's values must be positive. Current grid [%s, %s]" % (n, m)) if n > height // 2 or m > width // 2: raise ValueError("Incorrect size cell of grid. Just shuffle pixels of image") height_split = np.linspace(0, height, n + 1, dtype=np.int32) width_split = np.linspace(0, width, m + 1, dtype=np.int32) height_matrix, width_matrix = np.meshgrid(height_split, width_split, indexing="ij") index_height_matrix = height_matrix[:-1, :-1] index_width_matrix = width_matrix[:-1, :-1] shifted_index_height_matrix = height_matrix[1:, 1:] shifted_index_width_matrix = width_matrix[1:, 1:] height_tile_sizes = shifted_index_height_matrix - index_height_matrix width_tile_sizes = shifted_index_width_matrix - index_width_matrix tiles_sizes = np.stack((height_tile_sizes, width_tile_sizes), axis=2) index_matrix = np.indices((n, m)) new_index_matrix = np.stack(index_matrix, axis=2) for bbox_size in np.unique(tiles_sizes.reshape(-1, 2), axis=0): eq_mat = np.all(tiles_sizes == bbox_size, axis=2) new_index_matrix[eq_mat] = random_utils.permutation(new_index_matrix[eq_mat]) new_index_matrix = np.split(new_index_matrix, 2, axis=2) old_x = index_height_matrix[new_index_matrix[0], new_index_matrix[1]].reshape(-1) old_y = index_width_matrix[new_index_matrix[0], new_index_matrix[1]].reshape(-1) shift_x = height_tile_sizes.reshape(-1) shift_y = width_tile_sizes.reshape(-1) curr_x = index_height_matrix.reshape(-1) curr_y = index_width_matrix.reshape(-1) tiles = np.stack([curr_x, curr_y, old_x, old_y, shift_x, shift_y], axis=1) return {"tiles": tiles} @property def targets_as_params(self): return ["image"] def get_transform_init_args_names(self): return ("grid",) class Normalize(ImageOnlyTransform): """Normalization is applied by the formula: `img = (img - mean * max_pixel_value) / (std * max_pixel_value)` Args: mean (float, list of float): mean values std (float, list of float): std values max_pixel_value (float): maximum possible pixel value Targets: image Image types: uint8, float32 """ def __init__( self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, always_apply=False, p=1.0, ): super(Normalize, self).__init__(always_apply, p) self.mean = mean self.std = std self.max_pixel_value = max_pixel_value def apply(self, image, **params): return F.normalize(image, self.mean, self.std, self.max_pixel_value) def get_transform_init_args_names(self): return ("mean", "std", "max_pixel_value") class ImageCompression(ImageOnlyTransform): """Decreases image quality by Jpeg, WebP compression of an image. Args: quality_lower (float): lower bound on the image quality. Should be in [0, 100] range for jpeg and [1, 100] for webp. quality_upper (float): upper bound on the image quality. Should be in [0, 100] range for jpeg and [1, 100] for webp. compression_type (ImageCompressionType): should be ImageCompressionType.JPEG or ImageCompressionType.WEBP. Default: ImageCompressionType.JPEG Targets: image Image types: uint8, float32 """ class ImageCompressionType(IntEnum): JPEG = 0 WEBP = 1 def __init__( self, quality_lower=99, quality_upper=100, compression_type=ImageCompressionType.JPEG, always_apply=False, p=0.5, ): super(ImageCompression, self).__init__(always_apply, p) self.compression_type = ImageCompression.ImageCompressionType(compression_type) low_thresh_quality_assert = 0 if self.compression_type == ImageCompression.ImageCompressionType.WEBP: low_thresh_quality_assert = 1 if not low_thresh_quality_assert <= quality_lower <= 100: raise ValueError("Invalid quality_lower. Got: {}".format(quality_lower)) if not low_thresh_quality_assert <= quality_upper <= 100: raise ValueError("Invalid quality_upper. Got: {}".format(quality_upper)) self.quality_lower = quality_lower self.quality_upper = quality_upper def apply(self, image, quality=100, image_type=".jpg", **params): if not image.ndim == 2 and image.shape[-1] not in (1, 3, 4): raise TypeError("ImageCompression transformation expects 1, 3 or 4 channel images.") return F.image_compression(image, quality, image_type) def get_params(self): image_type = ".jpg" if self.compression_type == ImageCompression.ImageCompressionType.WEBP: image_type = ".webp" return { "quality": random.randint(self.quality_lower, self.quality_upper), "image_type": image_type, } def get_transform_init_args(self): return { "quality_lower": self.quality_lower, "quality_upper": self.quality_upper, "compression_type": self.compression_type.value, } class JpegCompression(ImageCompression): """Decreases image quality by Jpeg compression of an image. Args: quality_lower (float): lower bound on the jpeg quality. Should be in [0, 100] range quality_upper (float): upper bound on the jpeg quality. Should be in [0, 100] range Targets: image Image types: uint8, float32 """ def __init__(self, quality_lower=99, quality_upper=100, always_apply=False, p=0.5): super(JpegCompression, self).__init__( quality_lower=quality_lower, quality_upper=quality_upper, compression_type=ImageCompression.ImageCompressionType.JPEG, always_apply=always_apply, p=p, ) warnings.warn( f"{self.__class__.__name__} has been deprecated. Please use ImageCompression", FutureWarning, ) def get_transform_init_args(self): return { "quality_lower": self.quality_lower, "quality_upper": self.quality_upper, } class RandomSnow(ImageOnlyTransform): """Bleach out some pixel values simulating snow. From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: snow_point_lower (float): lower_bond of the amount of snow. Should be in [0, 1] range snow_point_upper (float): upper_bond of the amount of snow. Should be in [0, 1] range brightness_coeff (float): larger number will lead to a more snow on the image. Should be >= 0 Targets: image Image types: uint8, float32 """ def __init__( self, snow_point_lower=0.1, snow_point_upper=0.3, brightness_coeff=2.5, always_apply=False, p=0.5, ): super(RandomSnow, self).__init__(always_apply, p) if not 0 <= snow_point_lower <= snow_point_upper <= 1: raise ValueError( "Invalid combination of snow_point_lower and snow_point_upper. Got: {}".format( (snow_point_lower, snow_point_upper) ) ) if brightness_coeff < 0: raise ValueError("brightness_coeff must be greater than 0. Got: {}".format(brightness_coeff)) self.snow_point_lower = snow_point_lower self.snow_point_upper = snow_point_upper self.brightness_coeff = brightness_coeff def apply(self, image, snow_point=0.1, **params): return F.add_snow(image, snow_point, self.brightness_coeff) def get_params(self): return {"snow_point": random.uniform(self.snow_point_lower, self.snow_point_upper)} def get_transform_init_args_names(self): return ("snow_point_lower", "snow_point_upper", "brightness_coeff") class RandomGravel(ImageOnlyTransform): """Add gravels. From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: gravel_roi (float, float, float, float): (top-left x, top-left y, bottom-right x, bottom right y). Should be in [0, 1] range number_of_patches (int): no. of gravel patches required Targets: image Image types: uint8, float32 """ def __init__( self, gravel_roi: tuple = (0.1, 0.4, 0.9, 0.9), number_of_patches: int = 2, always_apply: bool = False, p: float = 0.5, ): super(RandomGravel, self).__init__(always_apply, p) (gravel_lower_x, gravel_lower_y, gravel_upper_x, gravel_upper_y) = gravel_roi if not 0 <= gravel_lower_x < gravel_upper_x <= 1 or not 0 <= gravel_lower_y < gravel_upper_y <= 1: raise ValueError("Invalid gravel_roi. Got: %s." % gravel_roi) if number_of_patches < 1: raise ValueError("Invalid gravel number_of_patches. Got: %s." % number_of_patches) self.gravel_roi = gravel_roi self.number_of_patches = number_of_patches def generate_gravel_patch(self, rectangular_roi): x1, y1, x2, y2 = rectangular_roi gravels = [] area = abs((x2 - x1) * (y2 - y1)) count = area // 10 gravels = np.empty([count, 2], dtype=np.int64) gravels[:, 0] = random_utils.randint(x1, x2, count) gravels[:, 1] = random_utils.randint(y1, y2, count) return gravels def apply(self, image, gravels_infos=(), **params): return F.add_gravel(image, gravels_infos) @property def targets_as_params(self): return ["image"] def get_params_dependent_on_targets(self, params): img = params["image"] height, width = img.shape[:2] x_min, y_min, x_max, y_max = self.gravel_roi x_min = int(x_min * width) x_max = int(x_max * width) y_min = int(y_min * height) y_max = int(y_max * height) max_height = 200 max_width = 30 rectangular_rois = np.zeros([self.number_of_patches, 4], dtype=np.int64) xx1 = random_utils.randint(x_min + 1, x_max, self.number_of_patches) # xmax xx2 = random_utils.randint(x_min, xx1) # xmin yy1 = random_utils.randint(y_min + 1, y_max, self.number_of_patches) # ymax yy2 = random_utils.randint(y_min, yy1) # ymin rectangular_rois[:, 0] = xx2 rectangular_rois[:, 1] = yy2 rectangular_rois[:, 2] = [min(tup) for tup in zip(xx1, xx2 + max_height)] rectangular_rois[:, 3] = [min(tup) for tup in zip(yy1, yy2 + max_width)] minx = [] maxx = [] miny = [] maxy = [] val = [] for roi in rectangular_rois: gravels = self.generate_gravel_patch(roi) x = gravels[:, 0] y = gravels[:, 1] r = random_utils.randint(1, 4, len(gravels)) sat = random_utils.randint(0, 255, len(gravels)) miny.append(np.maximum(y - r, 0)) maxy.append(np.minimum(y + r, y)) minx.append(np.maximum(x - r, 0)) maxx.append(np.minimum(x + r, x)) val.append(sat) return { "gravels_infos": np.stack( [ np.concatenate(miny), np.concatenate(maxy), np.concatenate(minx), np.concatenate(maxx), np.concatenate(val), ], 1, ) } def get_transform_init_args_names(self): return {"gravel_roi": self.gravel_roi, "number_of_patches": self.number_of_patches} class RandomRain(ImageOnlyTransform): """Adds rain effects. From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: slant_lower: should be in range [-20, 20]. slant_upper: should be in range [-20, 20]. drop_length: should be in range [0, 100]. drop_width: should be in range [1, 5]. drop_color (list of (r, g, b)): rain lines color. blur_value (int): rainy view are blurry brightness_coefficient (float): rainy days are usually shady. Should be in range [0, 1]. rain_type: One of [None, "drizzle", "heavy", "torrential"] Targets: image Image types: uint8, float32 """ def __init__( self, slant_lower=-10, slant_upper=10, drop_length=20, drop_width=1, drop_color=(200, 200, 200), blur_value=7, brightness_coefficient=0.7, rain_type=None, always_apply=False, p=0.5, ): super(RandomRain, self).__init__(always_apply, p) if rain_type not in ["drizzle", "heavy", "torrential", None]: raise ValueError( "raint_type must be one of ({}). Got: {}".format(["drizzle", "heavy", "torrential", None], rain_type) ) if not -20 <= slant_lower <= slant_upper <= 20: raise ValueError( "Invalid combination of slant_lower and slant_upper. Got: {}".format((slant_lower, slant_upper)) ) if not 1 <= drop_width <= 5: raise ValueError("drop_width must be in range [1, 5]. Got: {}".format(drop_width)) if not 0 <= drop_length <= 100: raise ValueError("drop_length must be in range [0, 100]. Got: {}".format(drop_length)) if not 0 <= brightness_coefficient <= 1: raise ValueError("brightness_coefficient must be in range [0, 1]. Got: {}".format(brightness_coefficient)) self.slant_lower = slant_lower self.slant_upper = slant_upper self.drop_length = drop_length self.drop_width = drop_width self.drop_color = drop_color self.blur_value = blur_value self.brightness_coefficient = brightness_coefficient self.rain_type = rain_type def apply(self, image, slant=10, drop_length=20, rain_drops=(), **params): return F.add_rain( image, slant, drop_length, self.drop_width, self.drop_color, self.blur_value, self.brightness_coefficient, rain_drops, ) @property def targets_as_params(self): return ["image"] def get_params_dependent_on_targets(self, params): img = params["image"] slant = int(random.uniform(self.slant_lower, self.slant_upper)) height, width = img.shape[:2] area = height * width if self.rain_type == "drizzle": num_drops = area // 770 drop_length = 10 elif self.rain_type == "heavy": num_drops = width * height // 600 drop_length = 30 elif self.rain_type == "torrential": num_drops = area // 500 drop_length = 60 else: drop_length = self.drop_length num_drops = area // 600 rain_drops = [] for _i in range(num_drops): # If You want heavy rain, try increasing this if slant < 0: x = random.randint(slant, width) else: x = random.randint(0, width - slant) y = random.randint(0, height - drop_length) rain_drops.append((x, y)) return {"drop_length": drop_length, "slant": slant, "rain_drops": rain_drops} def get_transform_init_args_names(self): return ( "slant_lower", "slant_upper", "drop_length", "drop_width", "drop_color", "blur_value", "brightness_coefficient", "rain_type", ) class RandomFog(ImageOnlyTransform): """Simulates fog for the image From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: fog_coef_lower (float): lower limit for fog intensity coefficient. Should be in [0, 1] range. fog_coef_upper (float): upper limit for fog intensity coefficient. Should be in [0, 1] range. alpha_coef (float): transparency of the fog circles. Should be in [0, 1] range. Targets: image Image types: uint8, float32 """ def __init__( self, fog_coef_lower=0.3, fog_coef_upper=1, alpha_coef=0.08, always_apply=False, p=0.5, ): super(RandomFog, self).__init__(always_apply, p) if not 0 <= fog_coef_lower <= fog_coef_upper <= 1: raise ValueError( "Invalid combination if fog_coef_lower and fog_coef_upper. Got: {}".format( (fog_coef_lower, fog_coef_upper) ) ) if not 0 <= alpha_coef <= 1: raise ValueError("alpha_coef must be in range [0, 1]. Got: {}".format(alpha_coef)) self.fog_coef_lower = fog_coef_lower self.fog_coef_upper = fog_coef_upper self.alpha_coef = alpha_coef def apply(self, image, fog_coef=0.1, haze_list=(), **params): return F.add_fog(image, fog_coef, self.alpha_coef, haze_list) @property def targets_as_params(self): return ["image"] def get_params_dependent_on_targets(self, params): img = params["image"] fog_coef = random.uniform(self.fog_coef_lower, self.fog_coef_upper) height, width = imshape = img.shape[:2] hw = max(1, int(width // 3 * fog_coef)) haze_list = [] midx = width // 2 - 2 * hw midy = height // 2 - hw index = 1 while midx > -hw or midy > -hw: for _i in range(hw // 10 * index): x = random.randint(midx, width - midx - hw) y = random.randint(midy, height - midy - hw) haze_list.append((x, y)) midx -= 3 * hw * width // sum(imshape) midy -= 3 * hw * height // sum(imshape) index += 1 return {"haze_list": haze_list, "fog_coef": fog_coef} def get_transform_init_args_names(self): return ("fog_coef_lower", "fog_coef_upper", "alpha_coef") class RandomSunFlare(ImageOnlyTransform): """Simulates Sun Flare for the image From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: flare_roi (float, float, float, float): region of the image where flare will appear (x_min, y_min, x_max, y_max). All values should be in range [0, 1]. angle_lower (float): should be in range [0, `angle_upper`]. angle_upper (float): should be in range [`angle_lower`, 1]. num_flare_circles_lower (int): lower limit for the number of flare circles. Should be in range [0, `num_flare_circles_upper`]. num_flare_circles_upper (int): upper limit for the number of flare circles. Should be in range [`num_flare_circles_lower`, inf]. src_radius (int): src_color ((int, int, int)): color of the flare Targets: image Image types: uint8, float32 """ def __init__( self, flare_roi=(0, 0, 1, 0.5), angle_lower=0, angle_upper=1, num_flare_circles_lower=6, num_flare_circles_upper=10, src_radius=400, src_color=(255, 255, 255), always_apply=False, p=0.5, ): super(RandomSunFlare, self).__init__(always_apply, p) ( flare_center_lower_x, flare_center_lower_y, flare_center_upper_x, flare_center_upper_y, ) = flare_roi if ( not 0 <= flare_center_lower_x < flare_center_upper_x <= 1 or not 0 <= flare_center_lower_y < flare_center_upper_y <= 1 ): raise ValueError("Invalid flare_roi. Got: {}".format(flare_roi)) if not 0 <= angle_lower < angle_upper <= 1: raise ValueError( "Invalid combination of angle_lower nad angle_upper. Got: {}".format((angle_lower, angle_upper)) ) if not 0 <= num_flare_circles_lower < num_flare_circles_upper: raise ValueError( "Invalid combination of num_flare_circles_lower nad num_flare_circles_upper. Got: {}".format( (num_flare_circles_lower, num_flare_circles_upper) ) ) self.flare_center_lower_x = flare_center_lower_x self.flare_center_upper_x = flare_center_upper_x self.flare_center_lower_y = flare_center_lower_y self.flare_center_upper_y = flare_center_upper_y self.angle_lower = angle_lower self.angle_upper = angle_upper self.num_flare_circles_lower = num_flare_circles_lower self.num_flare_circles_upper = num_flare_circles_upper self.src_radius = src_radius self.src_color = src_color def apply(self, image, flare_center_x=0.5, flare_center_y=0.5, circles=(), **params): return F.add_sun_flare( image, flare_center_x, flare_center_y, self.src_radius, self.src_color, circles, ) @property def targets_as_params(self): return ["image"] def get_params_dependent_on_targets(self, params): img = params["image"] height, width = img.shape[:2] angle = 2 * math.pi * random.uniform(self.angle_lower, self.angle_upper) flare_center_x = random.uniform(self.flare_center_lower_x, self.flare_center_upper_x) flare_center_y = random.uniform(self.flare_center_lower_y, self.flare_center_upper_y) flare_center_x = int(width * flare_center_x) flare_center_y = int(height * flare_center_y) num_circles = random.randint(self.num_flare_circles_lower, self.num_flare_circles_upper) circles = [] x = [] y = [] def line(t): return (flare_center_x + t * math.cos(angle), flare_center_y + t * math.sin(angle)) for t_val in range(-flare_center_x, width - flare_center_x, 10): rand_x, rand_y = line(t_val) x.append(rand_x) y.append(rand_y) for _i in range(num_circles): alpha = random.uniform(0.05, 0.2) r = random.randint(0, len(x) - 1) rad = random.randint(1, max(height // 100 - 2, 2)) r_color = random.randint(max(self.src_color[0] - 50, 0), self.src_color[0]) g_color = random.randint(max(self.src_color[1] - 50, 0), self.src_color[1]) b_color = random.randint(max(self.src_color[2] - 50, 0), self.src_color[2]) circles += [ ( alpha, (int(x[r]), int(y[r])), pow(rad, 3), (r_color, g_color, b_color), ) ] return { "circles": circles, "flare_center_x": flare_center_x, "flare_center_y": flare_center_y, } def get_transform_init_args(self): return { "flare_roi": ( self.flare_center_lower_x, self.flare_center_lower_y, self.flare_center_upper_x, self.flare_center_upper_y, ), "angle_lower": self.angle_lower, "angle_upper": self.angle_upper, "num_flare_circles_lower": self.num_flare_circles_lower, "num_flare_circles_upper": self.num_flare_circles_upper, "src_radius": self.src_radius, "src_color": self.src_color, } class RandomShadow(ImageOnlyTransform): """Simulates shadows for the image From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: shadow_roi (float, float, float, float): region of the image where shadows will appear (x_min, y_min, x_max, y_max). All values should be in range [0, 1]. num_shadows_lower (int): Lower limit for the possible number of shadows. Should be in range [0, `num_shadows_upper`]. num_shadows_upper (int): Lower limit for the possible number of shadows. Should be in range [`num_shadows_lower`, inf]. shadow_dimension (int): number of edges in the shadow polygons Targets: image Image types: uint8, float32 """ def __init__( self, shadow_roi=(0, 0.5, 1, 1), num_shadows_lower=1, num_shadows_upper=2, shadow_dimension=5, always_apply=False, p=0.5, ): super(RandomShadow, self).__init__(always_apply, p) (shadow_lower_x, shadow_lower_y, shadow_upper_x, shadow_upper_y) = shadow_roi if not 0 <= shadow_lower_x <= shadow_upper_x <= 1 or not 0 <= shadow_lower_y <= shadow_upper_y <= 1: raise ValueError("Invalid shadow_roi. Got: {}".format(shadow_roi)) if not 0 <= num_shadows_lower <= num_shadows_upper: raise ValueError( "Invalid combination of num_shadows_lower nad num_shadows_upper. Got: {}".format( (num_shadows_lower, num_shadows_upper) ) ) self.shadow_roi = shadow_roi self.num_shadows_lower = num_shadows_lower self.num_shadows_upper = num_shadows_upper self.shadow_dimension = shadow_dimension def apply(self, image, vertices_list=(), **params): return F.add_shadow(image, vertices_list) @property def targets_as_params(self): return ["image"] def get_params_dependent_on_targets(self, params): img = params["image"] height, width = img.shape[:2] num_shadows = random.randint(self.num_shadows_lower, self.num_shadows_upper) x_min, y_min, x_max, y_max = self.shadow_roi x_min = int(x_min * width) x_max = int(x_max * width) y_min = int(y_min * height) y_max = int(y_max * height) vertices_list = [] for _index in range(num_shadows): vertex = [] for _dimension in range(self.shadow_dimension): vertex.append((random.randint(x_min, x_max), random.randint(y_min, y_max))) vertices = np.array([vertex], dtype=np.int32) vertices_list.append(vertices) return {"vertices_list": vertices_list} def get_transform_init_args_names(self): return ( "shadow_roi", "num_shadows_lower", "num_shadows_upper", "shadow_dimension", ) class RandomToneCurve(ImageOnlyTransform): """Randomly change the relationship between bright and dark areas of the image by manipulating its tone curve. Args: scale (float): standard deviation of the normal distribution. Used to sample random distances to move two control points that modify the image's curve. Values should be in range [0, 1]. Default: 0.1 Targets: image Image types: uint8 """ def __init__( self, scale=0.1, always_apply=False, p=0.5, ): super(RandomToneCurve, self).__init__(always_apply, p) self.scale = scale def apply(self, image, low_y, high_y, **params): return F.move_tone_curve(image, low_y, high_y) def get_params(self): return { "low_y": np.clip(random_utils.normal(loc=0.25, scale=self.scale), 0, 1), "high_y": np.clip(random_utils.normal(loc=0.75, scale=self.scale), 0, 1), } def get_transform_init_args_names(self): return ("scale",) class HueSaturationValue(ImageOnlyTransform): """Randomly change hue, saturation and value of the input image. Args: hue_shift_limit ((int, int) or int): range for changing hue. If hue_shift_limit is a single int, the range will be (-hue_shift_limit, hue_shift_limit). Default: (-20, 20). sat_shift_limit ((int, int) or int): range for changing saturation. If sat_shift_limit is a single int, the range will be (-sat_shift_limit, sat_shift_limit). Default: (-30, 30). val_shift_limit ((int, int) or int): range for changing value. If val_shift_limit is a single int, the range will be (-val_shift_limit, val_shift_limit). Default: (-20, 20). p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__( self, hue_shift_limit=20, sat_shift_limit=30, val_shift_limit=20, always_apply=False, p=0.5, ): super(HueSaturationValue, self).__init__(always_apply, p) self.hue_shift_limit = to_tuple(hue_shift_limit) self.sat_shift_limit = to_tuple(sat_shift_limit) self.val_shift_limit = to_tuple(val_shift_limit) def apply(self, image, hue_shift=0, sat_shift=0, val_shift=0, **params): if not is_rgb_image(image) and not is_grayscale_image(image): raise TypeError("HueSaturationValue transformation expects 1-channel or 3-channel images.") return F.shift_hsv(image, hue_shift, sat_shift, val_shift) def get_params(self): return { "hue_shift": random.uniform(self.hue_shift_limit[0], self.hue_shift_limit[1]), "sat_shift": random.uniform(self.sat_shift_limit[0], self.sat_shift_limit[1]), "val_shift": random.uniform(self.val_shift_limit[0], self.val_shift_limit[1]), } def get_transform_init_args_names(self): return ("hue_shift_limit", "sat_shift_limit", "val_shift_limit") class Solarize(ImageOnlyTransform): """Invert all pixel values above a threshold. Args: threshold ((int, int) or int, or (float, float) or float): range for solarizing threshold. If threshold is a single value, the range will be [threshold, threshold]. Default: 128. p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: any """ def __init__(self, threshold=128, always_apply=False, p=0.5): super(Solarize, self).__init__(always_apply, p) if isinstance(threshold, (int, float)): self.threshold = to_tuple(threshold, low=threshold) else: self.threshold = to_tuple(threshold, low=0) def apply(self, image, threshold=0, **params): return F.solarize(image, threshold) def get_params(self): return {"threshold": random.uniform(self.threshold[0], self.threshold[1])} def get_transform_init_args_names(self): return ("threshold",) class Posterize(ImageOnlyTransform): """Reduce the number of bits for each color channel. Args: num_bits ((int, int) or int, or list of ints [r, g, b], or list of ints [[r1, r1], [g1, g2], [b1, b2]]): number of high bits. If num_bits is a single value, the range will be [num_bits, num_bits]. Must be in range [0, 8]. Default: 4. p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8 """ def __init__(self, num_bits=4, always_apply=False, p=0.5): super(Posterize, self).__init__(always_apply, p) if isinstance(num_bits, (list, tuple)): if len(num_bits) == 3: self.num_bits = [to_tuple(i, 0) for i in num_bits] else: self.num_bits = to_tuple(num_bits, 0) else: self.num_bits = to_tuple(num_bits, num_bits) def apply(self, image, num_bits=1, **params): return F.posterize(image, num_bits) def get_params(self): if len(self.num_bits) == 3: return {"num_bits": [random.randint(i[0], i[1]) for i in self.num_bits]} return {"num_bits": random.randint(self.num_bits[0], self.num_bits[1])} def get_transform_init_args_names(self): return ("num_bits",) class Equalize(ImageOnlyTransform): """Equalize the image histogram. Args: mode (str): {'cv', 'pil'}. Use OpenCV or Pillow equalization method. by_channels (bool): If True, use equalization by channels separately, else convert image to YCbCr representation and use equalization by `Y` channel. mask (np.ndarray, callable): If given, only the pixels selected by the mask are included in the analysis. Maybe 1 channel or 3 channel array or callable. Function signature must include `image` argument. mask_params (list of str): Params for mask function. Targets: image Image types: uint8 """ def __init__( self, mode="cv", by_channels=True, mask=None, mask_params=(), always_apply=False, p=0.5, ): modes = ["cv", "pil"] if mode not in modes: raise ValueError("Unsupported equalization mode. Supports: {}. " "Got: {}".format(modes, mode)) super(Equalize, self).__init__(always_apply, p) self.mode = mode self.by_channels = by_channels self.mask = mask self.mask_params = mask_params def apply(self, image, mask=None, **params): return F.equalize(image, mode=self.mode, by_channels=self.by_channels, mask=mask) def get_params_dependent_on_targets(self, params): if not callable(self.mask): return {"mask": self.mask} return {"mask": self.mask(**params)} @property def targets_as_params(self): return ["image"] + list(self.mask_params) def get_transform_init_args_names(self): return ("mode", "by_channels") class RGBShift(ImageOnlyTransform): """Randomly shift values for each channel of the input RGB image. Args: r_shift_limit ((int, int) or int): range for changing values for the red channel. If r_shift_limit is a single int, the range will be (-r_shift_limit, r_shift_limit). Default: (-20, 20). g_shift_limit ((int, int) or int): range for changing values for the green channel. If g_shift_limit is a single int, the range will be (-g_shift_limit, g_shift_limit). Default: (-20, 20). b_shift_limit ((int, int) or int): range for changing values for the blue channel. If b_shift_limit is a single int, the range will be (-b_shift_limit, b_shift_limit). Default: (-20, 20). p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__( self, r_shift_limit=20, g_shift_limit=20, b_shift_limit=20, always_apply=False, p=0.5, ): super(RGBShift, self).__init__(always_apply, p) self.r_shift_limit = to_tuple(r_shift_limit) self.g_shift_limit = to_tuple(g_shift_limit) self.b_shift_limit = to_tuple(b_shift_limit) def apply(self, image, r_shift=0, g_shift=0, b_shift=0, **params): if not is_rgb_image(image): raise TypeError("RGBShift transformation expects 3-channel images.") return F.shift_rgb(image, r_shift, g_shift, b_shift) def get_params(self): return { "r_shift": random.uniform(self.r_shift_limit[0], self.r_shift_limit[1]), "g_shift": random.uniform(self.g_shift_limit[0], self.g_shift_limit[1]), "b_shift": random.uniform(self.b_shift_limit[0], self.b_shift_limit[1]), } def get_transform_init_args_names(self): return ("r_shift_limit", "g_shift_limit", "b_shift_limit") class RandomBrightnessContrast(ImageOnlyTransform): """Randomly change brightness and contrast of the input image. Args: brightness_limit ((float, float) or float): factor range for changing brightness. If limit is a single float, the range will be (-limit, limit). Default: (-0.2, 0.2). contrast_limit ((float, float) or float): factor range for changing contrast. If limit is a single float, the range will be (-limit, limit). Default: (-0.2, 0.2). brightness_by_max (Boolean): If True adjust contrast by image dtype maximum, else adjust contrast by image mean. p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__( self, brightness_limit=0.2, contrast_limit=0.2, brightness_by_max=True, always_apply=False, p=0.5, ): super(RandomBrightnessContrast, self).__init__(always_apply, p) self.brightness_limit = to_tuple(brightness_limit) self.contrast_limit = to_tuple(contrast_limit) self.brightness_by_max = brightness_by_max def apply(self, img, alpha=1.0, beta=0.0, **params): return F.brightness_contrast_adjust(img, alpha, beta, self.brightness_by_max) def get_params(self): return { "alpha": 1.0 + random.uniform(self.contrast_limit[0], self.contrast_limit[1]), "beta": 0.0 + random.uniform(self.brightness_limit[0], self.brightness_limit[1]), } def get_transform_init_args_names(self): return ("brightness_limit", "contrast_limit", "brightness_by_max") class RandomBrightness(RandomBrightnessContrast): """Randomly change brightness of the input image. Args: limit ((float, float) or float): factor range for changing brightness. If limit is a single float, the range will be (-limit, limit). Default: (-0.2, 0.2). p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__(self, limit=0.2, always_apply=False, p=0.5): super(RandomBrightness, self).__init__(brightness_limit=limit, contrast_limit=0, always_apply=always_apply, p=p) warnings.warn( "This class has been deprecated. Please use RandomBrightnessContrast", FutureWarning, ) def get_transform_init_args(self): return {"limit": self.brightness_limit} class RandomContrast(RandomBrightnessContrast): """Randomly change contrast of the input image. Args: limit ((float, float) or float): factor range for changing contrast. If limit is a single float, the range will be (-limit, limit). Default: (-0.2, 0.2). p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__(self, limit=0.2, always_apply=False, p=0.5): super(RandomContrast, self).__init__(brightness_limit=0, contrast_limit=limit, always_apply=always_apply, p=p) warnings.warn( f"{self.__class__.__name__} has been deprecated. Please use RandomBrightnessContrast", FutureWarning, ) def get_transform_init_args(self): return {"limit": self.contrast_limit} class GaussNoise(ImageOnlyTransform): """Apply gaussian noise to the input image. Args: var_limit ((float, float) or float): variance range for noise. If var_limit is a single float, the range will be (0, var_limit). Default: (10.0, 50.0). mean (float): mean of the noise. Default: 0 per_channel (bool): if set to True, noise will be sampled for each channel independently. Otherwise, the noise will be sampled once for all channels. Default: True p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__(self, var_limit=(10.0, 50.0), mean=0, per_channel=True, always_apply=False, p=0.5): super(GaussNoise, self).__init__(always_apply, p) if isinstance(var_limit, (tuple, list)): if var_limit[0] < 0: raise ValueError("Lower var_limit should be non negative.") if var_limit[1] < 0: raise ValueError("Upper var_limit should be non negative.") self.var_limit = var_limit elif isinstance(var_limit, (int, float)): if var_limit < 0: raise ValueError("var_limit should be non negative.") self.var_limit = (0, var_limit) else: raise TypeError( "Expected var_limit type to be one of (int, float, tuple, list), got {}".format(type(var_limit)) ) self.mean = mean self.per_channel = per_channel def apply(self, img, gauss=None, **params): return F.gauss_noise(img, gauss=gauss) def get_params_dependent_on_targets(self, params): image = params["image"] var = random.uniform(self.var_limit[0], self.var_limit[1]) sigma = var**0.5 if self.per_channel: gauss = random_utils.normal(self.mean, sigma, image.shape) else: gauss = random_utils.normal(self.mean, sigma, image.shape[:2]) if len(image.shape) == 3: gauss = np.expand_dims(gauss, -1) return {"gauss": gauss} @property def targets_as_params(self): return ["image"] def get_transform_init_args_names(self): return ("var_limit", "per_channel", "mean") class ISONoise(ImageOnlyTransform): """ Apply camera sensor noise. Args: color_shift (float, float): variance range for color hue change. Measured as a fraction of 360 degree Hue angle in HLS colorspace. intensity ((float, float): Multiplicative factor that control strength of color and luminace noise. p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8 """ def __init__(self, color_shift=(0.01, 0.05), intensity=(0.1, 0.5), always_apply=False, p=0.5): super(ISONoise, self).__init__(always_apply, p) self.intensity = intensity self.color_shift = color_shift def apply(self, img, color_shift=0.05, intensity=1.0, random_state=None, **params): return F.iso_noise(img, color_shift, intensity, np.random.RandomState(random_state)) def get_params(self): return { "color_shift": random.uniform(self.color_shift[0], self.color_shift[1]), "intensity": random.uniform(self.intensity[0], self.intensity[1]), "random_state": random.randint(0, 65536), } def get_transform_init_args_names(self): return ("intensity", "color_shift") class CLAHE(ImageOnlyTransform): """Apply Contrast Limited Adaptive Histogram Equalization to the input image. Args: clip_limit (float or (float, float)): upper threshold value for contrast limiting. If clip_limit is a single float value, the range will be (1, clip_limit). Default: (1, 4). tile_grid_size ((int, int)): size of grid for histogram equalization. Default: (8, 8). p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8 """ def __init__(self, clip_limit=4.0, tile_grid_size=(8, 8), always_apply=False, p=0.5): super(CLAHE, self).__init__(always_apply, p) self.clip_limit = to_tuple(clip_limit, 1) self.tile_grid_size = tuple(tile_grid_size) def apply(self, img, clip_limit=2, **params): if not is_rgb_image(img) and not is_grayscale_image(img): raise TypeError("CLAHE transformation expects 1-channel or 3-channel images.") return F.clahe(img, clip_limit, self.tile_grid_size) def get_params(self): return {"clip_limit": random.uniform(self.clip_limit[0], self.clip_limit[1])} def get_transform_init_args_names(self): return ("clip_limit", "tile_grid_size") class ChannelShuffle(ImageOnlyTransform): """Randomly rearrange channels of the input RGB image. Args: p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ @property def targets_as_params(self): return ["image"] def apply(self, img, channels_shuffled=(0, 1, 2), **params): return F.channel_shuffle(img, channels_shuffled) def get_params_dependent_on_targets(self, params): img = params["image"] ch_arr = list(range(img.shape[2])) random.shuffle(ch_arr) return {"channels_shuffled": ch_arr} def get_transform_init_args_names(self): return () class InvertImg(ImageOnlyTransform): """Invert the input image by subtracting pixel values from max values of the image types, i.e., 255 for uint8 and 1.0 for float32. Args: p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def apply(self, img, **params): return F.invert(img) def get_transform_init_args_names(self): return () class RandomGamma(ImageOnlyTransform): """ Args: gamma_limit (float or (float, float)): If gamma_limit is a single float value, the range will be (-gamma_limit, gamma_limit). Default: (80, 120). eps: Deprecated. Targets: image Image types: uint8, float32 """ def __init__(self, gamma_limit=(80, 120), eps=None, always_apply=False, p=0.5): super(RandomGamma, self).__init__(always_apply, p) self.gamma_limit = to_tuple(gamma_limit) self.eps = eps def apply(self, img, gamma=1, **params): return F.gamma_transform(img, gamma=gamma) def get_params(self): return {"gamma": random.uniform(self.gamma_limit[0], self.gamma_limit[1]) / 100.0} def get_transform_init_args_names(self): return ("gamma_limit", "eps") class ToGray(ImageOnlyTransform): """Convert the input RGB image to grayscale. If the mean pixel value for the resulting image is greater than 127, invert the resulting grayscale image. Args: p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def apply(self, img, **params): if is_grayscale_image(img): warnings.warn("The image is already gray.") return img if not is_rgb_image(img): raise TypeError("ToGray transformation expects 3-channel images.") return F.to_gray(img) def get_transform_init_args_names(self): return () class ToRGB(ImageOnlyTransform): """Convert the input grayscale image to RGB. Args: p (float): probability of applying the transform. Default: 1. Targets: image Image types: uint8, float32 """ def __init__(self, always_apply=True, p=1.0): super(ToRGB, self).__init__(always_apply=always_apply, p=p) def apply(self, img, **params): if is_rgb_image(img): warnings.warn("The image is already an RGB.") return img if not is_grayscale_image(img): raise TypeError("ToRGB transformation expects 2-dim images or 3-dim with the last dimension equal to 1.") return F.gray_to_rgb(img) def get_transform_init_args_names(self): return () class ToSepia(ImageOnlyTransform): """Applies sepia filter to the input RGB image Args: p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__(self, always_apply=False, p=0.5): super(ToSepia, self).__init__(always_apply, p) self.sepia_transformation_matrix = np.array( [[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]] ) def apply(self, image, **params): if not is_rgb_image(image): raise TypeError("ToSepia transformation expects 3-channel images.") return F.linear_transformation_rgb(image, self.sepia_transformation_matrix) def get_transform_init_args_names(self): return () class ToFloat(ImageOnlyTransform): """Divide pixel values by `max_value` to get a float32 output array where all values lie in the range [0, 1.0]. If `max_value` is None the transform will try to infer the maximum value by inspecting the data type of the input image. See Also: :class:`~albumentations.augmentations.transforms.FromFloat` Args: max_value (float): maximum possible input value. Default: None. p (float): probability of applying the transform. Default: 1.0. Targets: image Image types: any type """ def __init__(self, max_value=None, always_apply=False, p=1.0): super(ToFloat, self).__init__(always_apply, p) self.max_value = max_value def apply(self, img, **params): return F.to_float(img, self.max_value) def get_transform_init_args_names(self): return ("max_value",) class FromFloat(ImageOnlyTransform): """Take an input array where all values should lie in the range [0, 1.0], multiply them by `max_value` and then cast the resulted value to a type specified by `dtype`. If `max_value` is None the transform will try to infer the maximum value for the data type from the `dtype` argument. This is the inverse transform for :class:`~albumentations.augmentations.transforms.ToFloat`. Args: max_value (float): maximum possible input value. Default: None. dtype (string or numpy data type): data type of the output. See the `'Data types' page from the NumPy docs`_. Default: 'uint16'. p (float): probability of applying the transform. Default: 1.0. Targets: image Image types: float32 .. _'Data types' page from the NumPy docs: https://docs.scipy.org/doc/numpy/user/basics.types.html """ def __init__(self, dtype="uint16", max_value=None, always_apply=False, p=1.0): super(FromFloat, self).__init__(always_apply, p) self.dtype = np.dtype(dtype) self.max_value = max_value def apply(self, img, **params): return F.from_float(img, self.dtype, self.max_value) def get_transform_init_args(self): return {"dtype": self.dtype.name, "max_value": self.max_value} class Downscale(ImageOnlyTransform): """Decreases image quality by downscaling and upscaling back. Args: scale_min (float): lower bound on the image scale. Should be < 1. scale_max (float): lower bound on the image scale. Should be . interpolation: cv2 interpolation method. Could be: - single cv2 interpolation flag - selected method will be used for downscale and upscale. - dict(downscale=flag, upscale=flag) - Downscale.Interpolation(downscale=flag, upscale=flag) - Default: Interpolation(downscale=cv2.INTER_NEAREST, upscale=cv2.INTER_NEAREST) Targets: image Image types: uint8, float32 """ class Interpolation: def __init__(self, *, downscale: int = cv2.INTER_NEAREST, upscale: int = cv2.INTER_NEAREST): self.downscale = downscale self.upscale = upscale def __init__( self, scale_min: float = 0.25, scale_max: float = 0.25, interpolation: Optional[Union[int, Interpolation, Dict[str, int]]] = None, always_apply: bool = False, p: float = 0.5, ): super(Downscale, self).__init__(always_apply, p) if interpolation is None: self.interpolation = self.Interpolation(downscale=cv2.INTER_NEAREST, upscale=cv2.INTER_NEAREST) warnings.warn( "Using default interpolation INTER_NEAREST, which is sub-optimal." "Please specify interpolation mode for downscale and upscale explicitly." "For additional information see this PR https://github.com/albumentations-team/albumentations/pull/584" ) elif isinstance(interpolation, int): self.interpolation = self.Interpolation(downscale=interpolation, upscale=interpolation) elif isinstance(interpolation, self.Interpolation): self.interpolation = interpolation elif isinstance(interpolation, dict): self.interpolation = self.Interpolation(**interpolation) else: raise ValueError( "Wrong interpolation data type. Supported types: `Optional[Union[int, Interpolation, Dict[str, int]]]`." f" Got: {type(interpolation)}" ) if scale_min > scale_max: raise ValueError("Expected scale_min be less or equal scale_max, got {} {}".format(scale_min, scale_max)) if scale_max >= 1: raise ValueError("Expected scale_max to be less than 1, got {}".format(scale_max)) self.scale_min = scale_min self.scale_max = scale_max def apply(self, img: np.ndarray, scale: Optional[float] = None, **params) -> np.ndarray: return F.downscale( img, scale=scale, down_interpolation=self.interpolation.downscale, up_interpolation=self.interpolation.upscale, ) def get_params(self) -> Dict[str, Any]: return {"scale": random.uniform(self.scale_min, self.scale_max)} def get_transform_init_args_names(self) -> Tuple[str, str]: return "scale_min", "scale_max" def _to_dict(self) -> Dict[str, Any]: result = super()._to_dict() result["interpolation"] = {"upscale": self.interpolation.upscale, "downscale": self.interpolation.downscale} return result class Lambda(NoOp): """A flexible transformation class for using user-defined transformation functions per targets. Function signature must include **kwargs to accept optinal arguments like interpolation method, image size, etc: Args: image (callable): Image transformation function. mask (callable): Mask transformation function. keypoint (callable): Keypoint transformation function. bbox (callable): BBox transformation function. always_apply (bool): Indicates whether this transformation should be always applied. p (float): probability of applying the transform. Default: 1.0. Targets: image, mask, bboxes, keypoints Image types: Any """ def __init__( self, image=None, mask=None, keypoint=None, bbox=None, name=None, always_apply=False, p=1.0, ): super(Lambda, self).__init__(always_apply, p) self.name = name self.custom_apply_fns = {target_name: F.noop for target_name in ("image", "mask", "keypoint", "bbox")} for target_name, custom_apply_fn in { "image": image, "mask": mask, "keypoint": keypoint, "bbox": bbox, }.items(): if custom_apply_fn is not None: if isinstance(custom_apply_fn, LambdaType) and custom_apply_fn.__name__ == "": warnings.warn( "Using lambda is incompatible with multiprocessing. " "Consider using regular functions or partial()." ) self.custom_apply_fns[target_name] = custom_apply_fn def apply(self, img, **params): fn = self.custom_apply_fns["image"] return fn(img, **params) def apply_to_mask(self, mask, **params): fn = self.custom_apply_fns["mask"] return fn(mask, **params) def apply_to_bbox(self, bbox, **params): fn = self.custom_apply_fns["bbox"] return fn(bbox, **params) def apply_to_keypoint(self, keypoint, **params): fn = self.custom_apply_fns["keypoint"] return fn(keypoint, **params) @classmethod def is_serializable(cls): return False def _to_dict(self): if self.name is None: raise ValueError( "To make a Lambda transform serializable you should provide the `name` argument, " "e.g. `Lambda(name='my_transform', image=, ...)`." ) return {"__class_fullname__": self.get_class_fullname(), "__name__": self.name} def __repr__(self): state = {"name": self.name} state.update(self.custom_apply_fns.items()) state.update(self.get_base_init_args()) return "{name}({args})".format(name=self.__class__.__name__, args=format_args(state)) class MultiplicativeNoise(ImageOnlyTransform): """Multiply image to random number or array of numbers. Args: multiplier (float or tuple of floats): If single float image will be multiplied to this number. If tuple of float multiplier will be in range `[multiplier[0], multiplier[1])`. Default: (0.9, 1.1). per_channel (bool): If `False`, same values for all channels will be used. If `True` use sample values for each channels. Default False. elementwise (bool): If `False` multiply multiply all pixels in an image with a random value sampled once. If `True` Multiply image pixels with values that are pixelwise randomly sampled. Defaule: False. Targets: image Image types: Any """ def __init__( self, multiplier=(0.9, 1.1), per_channel=False, elementwise=False, always_apply=False, p=0.5, ): super(MultiplicativeNoise, self).__init__(always_apply, p) self.multiplier = to_tuple(multiplier, multiplier) self.per_channel = per_channel self.elementwise = elementwise def apply(self, img, multiplier=np.array([1]), **kwargs): return F.multiply(img, multiplier) def get_params_dependent_on_targets(self, params): if self.multiplier[0] == self.multiplier[1]: return {"multiplier": np.array([self.multiplier[0]])} img = params["image"] h, w = img.shape[:2] if self.per_channel: c = 1 if is_grayscale_image(img) else img.shape[-1] else: c = 1 if self.elementwise: shape = [h, w, c] else: shape = [c] multiplier = random_utils.uniform(self.multiplier[0], self.multiplier[1], shape) if is_grayscale_image(img) and img.ndim == 2: multiplier = np.squeeze(multiplier) return {"multiplier": multiplier} @property def targets_as_params(self): return ["image"] def get_transform_init_args_names(self): return "multiplier", "per_channel", "elementwise" class FancyPCA(ImageOnlyTransform): """Augment RGB image using FancyPCA from Krizhevsky's paper "ImageNet Classification with Deep Convolutional Neural Networks" Args: alpha (float): how much to perturb/scale the eigen vecs and vals. scale is samples from gaussian distribution (mu=0, sigma=alpha) Targets: image Image types: 3-channel uint8 images only Credit: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf https://deshanadesai.github.io/notes/Fancy-PCA-with-Scikit-Image https://pixelatedbrian.github.io/2018-04-29-fancy_pca/ """ def __init__(self, alpha=0.1, always_apply=False, p=0.5): super(FancyPCA, self).__init__(always_apply=always_apply, p=p) self.alpha = alpha def apply(self, img, alpha=0.1, **params): img = F.fancy_pca(img, alpha) return img def get_params(self): return {"alpha": random.gauss(0, self.alpha)} def get_transform_init_args_names(self): return ("alpha",) class ColorJitter(ImageOnlyTransform): """Randomly changes the brightness, contrast, and saturation of an image. Compared to ColorJitter from torchvision, this transform gives a little bit different results because Pillow (used in torchvision) and OpenCV (used in Albumentations) transform an image to HSV format by different formulas. Another difference - Pillow uses uint8 overflow, but we use value saturation. Args: brightness (float or tuple of float (min, max)): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness] or the given [min, max]. Should be non negative numbers. contrast (float or tuple of float (min, max)): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast] or the given [min, max]. Should be non negative numbers. saturation (float or tuple of float (min, max)): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation] or the given [min, max]. Should be non negative numbers. hue (float or tuple of float (min, max)): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue] or the given [min, max]. Should have 0 <= hue <= 0.5 or -0.5 <= min <= max <= 0.5. """ def __init__( self, brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2, always_apply=False, p=0.5, ): super(ColorJitter, self).__init__(always_apply=always_apply, p=p) self.brightness = self.__check_values(brightness, "brightness") self.contrast = self.__check_values(contrast, "contrast") self.saturation = self.__check_values(saturation, "saturation") self.hue = self.__check_values(hue, "hue", offset=0, bounds=[-0.5, 0.5], clip=False) self.transforms = [ F.adjust_brightness_torchvision, F.adjust_contrast_torchvision, F.adjust_saturation_torchvision, F.adjust_hue_torchvision, ] @staticmethod def __check_values(value, name, offset=1, bounds=(0, float("inf")), clip=True): if isinstance(value, numbers.Number): if value < 0: raise ValueError("If {} is a single number, it must be non negative.".format(name)) value = [offset - value, offset + value] if clip: value[0] = max(value[0], 0) elif isinstance(value, (tuple, list)) and len(value) == 2: if not bounds[0] <= value[0] <= value[1] <= bounds[1]: raise ValueError("{} values should be between {}".format(name, bounds)) else: raise TypeError("{} should be a single number or a list/tuple with length 2.".format(name)) return value def get_params(self): brightness = random.uniform(self.brightness[0], self.brightness[1]) contrast = random.uniform(self.contrast[0], self.contrast[1]) saturation = random.uniform(self.saturation[0], self.saturation[1]) hue = random.uniform(self.hue[0], self.hue[1]) order = [0, 1, 2, 3] random.shuffle(order) return { "brightness": brightness, "contrast": contrast, "saturation": saturation, "hue": hue, "order": order, } def apply(self, img, brightness=1.0, contrast=1.0, saturation=1.0, hue=0, order=[0, 1, 2, 3], **params): if not is_rgb_image(img) and not is_grayscale_image(img): raise TypeError("ColorJitter transformation expects 1-channel or 3-channel images.") params = [brightness, contrast, saturation, hue] for i in order: img = self.transforms[i](img, params[i]) return img def get_transform_init_args_names(self): return ("brightness", "contrast", "saturation", "hue") class Sharpen(ImageOnlyTransform): """Sharpen the input image and overlays the result with the original image. Args: alpha ((float, float)): range to choose the visibility of the sharpened image. At 0, only the original image is visible, at 1.0 only its sharpened version is visible. Default: (0.2, 0.5). lightness ((float, float)): range to choose the lightness of the sharpened image. Default: (0.5, 1.0). p (float): probability of applying the transform. Default: 0.5. Targets: image """ def __init__(self, alpha=(0.2, 0.5), lightness=(0.5, 1.0), always_apply=False, p=0.5): super(Sharpen, self).__init__(always_apply, p) self.alpha = self.__check_values(to_tuple(alpha, 0.0), name="alpha", bounds=(0.0, 1.0)) self.lightness = self.__check_values(to_tuple(lightness, 0.0), name="lightness") @staticmethod def __check_values(value, name, bounds=(0, float("inf"))): if not bounds[0] <= value[0] <= value[1] <= bounds[1]: raise ValueError("{} values should be between {}".format(name, bounds)) return value @staticmethod def __generate_sharpening_matrix(alpha_sample, lightness_sample): matrix_nochange = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.float32) matrix_effect = np.array( [[-1, -1, -1], [-1, 8 + lightness_sample, -1], [-1, -1, -1]], dtype=np.float32, ) matrix = (1 - alpha_sample) * matrix_nochange + alpha_sample * matrix_effect return matrix def get_params(self): alpha = random.uniform(*self.alpha) lightness = random.uniform(*self.lightness) sharpening_matrix = self.__generate_sharpening_matrix(alpha_sample=alpha, lightness_sample=lightness) return {"sharpening_matrix": sharpening_matrix} def apply(self, img, sharpening_matrix=None, **params): return F.convolve(img, sharpening_matrix) def get_transform_init_args_names(self): return ("alpha", "lightness") class Emboss(ImageOnlyTransform): """Emboss the input image and overlays the result with the original image. Args: alpha ((float, float)): range to choose the visibility of the embossed image. At 0, only the original image is visible,at 1.0 only its embossed version is visible. Default: (0.2, 0.5). strength ((float, float)): strength range of the embossing. Default: (0.2, 0.7). p (float): probability of applying the transform. Default: 0.5. Targets: image """ def __init__(self, alpha=(0.2, 0.5), strength=(0.2, 0.7), always_apply=False, p=0.5): super(Emboss, self).__init__(always_apply, p) self.alpha = self.__check_values(to_tuple(alpha, 0.0), name="alpha", bounds=(0.0, 1.0)) self.strength = self.__check_values(to_tuple(strength, 0.0), name="strength") @staticmethod def __check_values(value, name, bounds=(0, float("inf"))): if not bounds[0] <= value[0] <= value[1] <= bounds[1]: raise ValueError("{} values should be between {}".format(name, bounds)) return value @staticmethod def __generate_emboss_matrix(alpha_sample, strength_sample): matrix_nochange = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.float32) matrix_effect = np.array( [ [-1 - strength_sample, 0 - strength_sample, 0], [0 - strength_sample, 1, 0 + strength_sample], [0, 0 + strength_sample, 1 + strength_sample], ], dtype=np.float32, ) matrix = (1 - alpha_sample) * matrix_nochange + alpha_sample * matrix_effect return matrix def get_params(self): alpha = random.uniform(*self.alpha) strength = random.uniform(*self.strength) emboss_matrix = self.__generate_emboss_matrix(alpha_sample=alpha, strength_sample=strength) return {"emboss_matrix": emboss_matrix} def apply(self, img, emboss_matrix=None, **params): return F.convolve(img, emboss_matrix) def get_transform_init_args_names(self): return ("alpha", "strength") class Superpixels(ImageOnlyTransform): """Transform images partially/completely to their superpixel representation. This implementation uses skimage's version of the SLIC algorithm. Args: p_replace (float or tuple of float): Defines for any segment the probability that the pixels within that segment are replaced by their average color (otherwise, the pixels are not changed). Examples: * A probability of ``0.0`` would mean, that the pixels in no segment are replaced by their average color (image is not changed at all). * A probability of ``0.5`` would mean, that around half of all segments are replaced by their average color. * A probability of ``1.0`` would mean, that all segments are replaced by their average color (resulting in a voronoi image). Behaviour based on chosen data types for this parameter: * If a ``float``, then that ``flat`` will always be used. * If ``tuple`` ``(a, b)``, then a random probability will be sampled from the interval ``[a, b]`` per image. n_segments (int, or tuple of int): Rough target number of how many superpixels to generate (the algorithm may deviate from this number). Lower value will lead to coarser superpixels. Higher values are computationally more intensive and will hence lead to a slowdown * If a single ``int``, then that value will always be used as the number of segments. * If a ``tuple`` ``(a, b)``, then a value from the discrete interval ``[a..b]`` will be sampled per image. max_size (int or None): Maximum image size at which the augmentation is performed. If the width or height of an image exceeds this value, it will be downscaled before the augmentation so that the longest side matches `max_size`. This is done to speed up the process. The final output image has the same size as the input image. Note that in case `p_replace` is below ``1.0``, the down-/upscaling will affect the not-replaced pixels too. Use ``None`` to apply no down-/upscaling. interpolation (OpenCV flag): flag that is used to specify the interpolation algorithm. Should be one of: cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4. Default: cv2.INTER_LINEAR. p (float): probability of applying the transform. Default: 0.5. Targets: image """ def __init__( self, p_replace: Union[float, Sequence[float]] = 0.1, n_segments: Union[int, Sequence[int]] = 100, max_size: Optional[int] = 128, interpolation: int = cv2.INTER_LINEAR, always_apply: bool = False, p: float = 0.5, ): super().__init__(always_apply=always_apply, p=p) self.p_replace = to_tuple(p_replace, p_replace) self.n_segments = to_tuple(n_segments, n_segments) self.max_size = max_size self.interpolation = interpolation if min(self.n_segments) < 1: raise ValueError(f"n_segments must be >= 1. Got: {n_segments}") def get_transform_init_args_names(self) -> Tuple[str, str, str, str]: return ("p_replace", "n_segments", "max_size", "interpolation") def get_params(self) -> dict: n_segments = random.randint(*self.n_segments) p = random.uniform(*self.p_replace) return {"replace_samples": random_utils.random(n_segments) < p, "n_segments": n_segments} def apply(self, img: np.ndarray, replace_samples: Sequence[bool] = (False,), n_segments: int = 1, **kwargs): return F.superpixels(img, n_segments, replace_samples, self.max_size, self.interpolation) class TemplateTransform(ImageOnlyTransform): """ Apply blending of input image with specified templates Args: templates (numpy array or list of numpy arrays): Images as template for transform. img_weight ((float, float) or float): If single float will be used as weight for input image. If tuple of float img_weight will be in range `[img_weight[0], img_weight[1])`. Default: 0.5. template_weight ((float, float) or float): If single float will be used as weight for template. If tuple of float template_weight will be in range `[template_weight[0], template_weight[1])`. Default: 0.5. template_transform: transformation object which could be applied to template, must produce template the same size as input image. name (string): (Optional) Name of transform, used only for deserialization. p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 """ def __init__( self, templates, img_weight=0.5, template_weight=0.5, template_transform=None, name=None, always_apply=False, p=0.5, ): super().__init__(always_apply, p) self.templates = templates if isinstance(templates, (list, tuple)) else [templates] self.img_weight = to_tuple(img_weight, img_weight) self.template_weight = to_tuple(template_weight, template_weight) self.template_transform = template_transform self.name = name def apply(self, img, template=None, img_weight=0.5, template_weight=0.5, **params): return F.add_weighted(img, img_weight, template, template_weight) def get_params(self): return { "img_weight": random.uniform(self.img_weight[0], self.img_weight[1]), "template_weight": random.uniform(self.template_weight[0], self.template_weight[1]), } def get_params_dependent_on_targets(self, params): img = params["image"] template = random.choice(self.templates) if self.template_transform is not None: template = self.template_transform(image=template)["image"] if get_num_channels(template) not in [1, get_num_channels(img)]: raise ValueError( "Template must be a single channel or " "has the same number of channels as input image ({}), got {}".format( get_num_channels(img), get_num_channels(template) ) ) if template.dtype != img.dtype: raise ValueError("Image and template must be the same image type") if img.shape[:2] != template.shape[:2]: raise ValueError( "Image and template must be the same size, got {} and {}".format(img.shape[:2], template.shape[:2]) ) if get_num_channels(template) == 1 and get_num_channels(img) > 1: template = np.stack((template,) * get_num_channels(img), axis=-1) # in order to support grayscale image with dummy dim template = template.reshape(img.shape) return {"template": template} @classmethod def is_serializable(cls): return False @property def targets_as_params(self): return ["image"] def _to_dict(self): if self.name is None: raise ValueError( "To make a TemplateTransform serializable you should provide the `name` argument, " "e.g. `TemplateTransform(name='my_transform', ...)`." ) return {"__class_fullname__": self.get_class_fullname(), "__name__": self.name} class RingingOvershoot(ImageOnlyTransform): """Create ringing or overshoot artefacts by conlvolving image with 2D sinc filter. Args: blur_limit (int, (int, int)): maximum kernel size for sinc filter. Should be in range [3, inf). Default: (7, 15). cutoff (float, (float, float)): range to choose the cutoff frequency in radians. Should be in range (0, np.pi) Default: (np.pi / 4, np.pi / 2). p (float): probability of applying the transform. Default: 0.5. Reference: dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter https://arxiv.org/abs/2107.10833 Targets: image """ def __init__( self, blur_limit: Union[int, Sequence[int]] = (7, 15), cutoff: Union[float, Sequence[float]] = (np.pi / 4, np.pi / 2), always_apply=False, p=0.5, ): super(RingingOvershoot, self).__init__(always_apply, p) self.blur_limit = to_tuple(blur_limit, 3) self.cutoff = self.__check_values(to_tuple(cutoff, np.pi / 2), name="cutoff", bounds=(0, np.pi)) @staticmethod def __check_values(value, name, bounds=(0, float("inf"))): if not bounds[0] <= value[0] <= value[1] <= bounds[1]: raise ValueError(f"{name} values should be between {bounds}") return value def get_params(self): ksize = random.randrange(self.blur_limit[0], self.blur_limit[1] + 1, 2) if ksize % 2 == 0: raise ValueError(f"Kernel size must be odd. Got: {ksize}") cutoff = random.uniform(*self.cutoff) # From dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter with np.errstate(divide="ignore", invalid="ignore"): kernel = np.fromfunction( lambda x, y: cutoff * special.j1(cutoff * np.sqrt((x - (ksize - 1) / 2) ** 2 + (y - (ksize - 1) / 2) ** 2)) / (2 * np.pi * np.sqrt((x - (ksize - 1) / 2) ** 2 + (y - (ksize - 1) / 2) ** 2)), [ksize, ksize], ) kernel[(ksize - 1) // 2, (ksize - 1) // 2] = cutoff**2 / (4 * np.pi) # Normalize kernel kernel = kernel.astype(np.float32) / np.sum(kernel) return {"kernel": kernel} def apply(self, img, kernel=None, **params): return F.convolve(img, kernel) def get_transform_init_args_names(self): return ("blur_limit", "cutoff") class UnsharpMask(ImageOnlyTransform): """ Sharpen the input image using Unsharp Masking processing and overlays the result with the original image. Args: blur_limit (int, (int, int)): maximum Gaussian kernel size for blurring the input image. Must be zero or odd and in range [0, inf). If set to 0 it will be computed from sigma as `round(sigma * (3 if img.dtype == np.uint8 else 4) * 2 + 1) + 1`. If set single value `blur_limit` will be in range (0, blur_limit). Default: (3, 7). sigma_limit (float, (float, float)): Gaussian kernel standard deviation. Must be in range [0, inf). If set single value `sigma_limit` will be in range (0, sigma_limit). If set to 0 sigma will be computed as `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`. Default: 0. alpha (float, (float, float)): range to choose the visibility of the sharpened image. At 0, only the original image is visible, at 1.0 only its sharpened version is visible. Default: (0.2, 0.5). threshold (int): Value to limit sharpening only for areas with high pixel difference between original image and it's smoothed version. Higher threshold means less sharpening on flat areas. Must be in range [0, 255]. Default: 10. p (float): probability of applying the transform. Default: 0.5. Reference: arxiv.org/pdf/2107.10833.pdf Targets: image """ def __init__( self, blur_limit: Union[int, Sequence[int]] = (3, 7), sigma_limit: Union[float, Sequence[float]] = 0.0, alpha: Union[float, Sequence[float]] = (0.2, 0.5), threshold: int = 10, always_apply=False, p=0.5, ): super(UnsharpMask, self).__init__(always_apply, p) self.blur_limit = to_tuple(blur_limit, 3) self.sigma_limit = self.__check_values(to_tuple(sigma_limit, 0.0), name="sigma_limit") self.alpha = self.__check_values(to_tuple(alpha, 0.0), name="alpha", bounds=(0.0, 1.0)) self.threshold = threshold if self.blur_limit[0] == 0 and self.sigma_limit[0] == 0: self.blur_limit = 3, max(3, self.blur_limit[1]) raise ValueError("blur_limit and sigma_limit minimum value can not be both equal to 0.") if (self.blur_limit[0] != 0 and self.blur_limit[0] % 2 != 1) or ( self.blur_limit[1] != 0 and self.blur_limit[1] % 2 != 1 ): raise ValueError("UnsharpMask supports only odd blur limits.") @staticmethod def __check_values(value, name, bounds=(0, float("inf"))): if not bounds[0] <= value[0] <= value[1] <= bounds[1]: raise ValueError(f"{name} values should be between {bounds}") return value def get_params(self): return { "ksize": random.randrange(self.blur_limit[0], self.blur_limit[1] + 1, 2), "sigma": random.uniform(*self.sigma_limit), "alpha": random.uniform(*self.alpha), } def apply(self, img, ksize=3, sigma=0, alpha=0.2, **params): return F.unsharp_mask(img, ksize, sigma=sigma, alpha=alpha, threshold=self.threshold) def get_transform_init_args_names(self): return ("blur_limit", "sigma_limit", "alpha", "threshold") class PixelDropout(DualTransform): """Set pixels to 0 with some probability. Args: dropout_prob (float): pixel drop probability. Default: 0.01 per_channel (bool): if set to `True` drop mask will be sampled fo each channel, otherwise the same mask will be sampled for all channels. Default: False drop_value (number or sequence of numbers or None): Value that will be set in dropped place. If set to None value will be sampled randomly, default ranges will be used: - uint8 - [0, 255] - uint16 - [0, 65535] - uint32 - [0, 4294967295] - float, double - [0, 1] Default: 0 mask_drop_value (number or sequence of numbers or None): Value that will be set in dropped place in masks. If set to None masks will be unchanged. Default: 0 p (float): probability of applying the transform. Default: 0.5. Targets: image, mask Image types: any """ def __init__( self, dropout_prob: float = 0.01, per_channel: bool = False, drop_value: Optional[Union[float, Sequence[float]]] = 0, mask_drop_value: Optional[Union[float, Sequence[float]]] = None, always_apply: bool = False, p: float = 0.5, ): super().__init__(always_apply, p) self.dropout_prob = dropout_prob self.per_channel = per_channel self.drop_value = drop_value self.mask_drop_value = mask_drop_value if self.mask_drop_value is not None and self.per_channel: raise ValueError("PixelDropout supports mask only with per_channel=False") def apply( self, img: np.ndarray, drop_mask: np.ndarray = np.array(None), drop_value: Union[float, Sequence[float]] = (), **params ) -> np.ndarray: return F.pixel_dropout(img, drop_mask, drop_value) def apply_to_mask(self, img: np.ndarray, drop_mask: np.ndarray = np.array(None), **params) -> np.ndarray: if self.mask_drop_value is None: return img if img.ndim == 2: drop_mask = np.squeeze(drop_mask) return F.pixel_dropout(img, drop_mask, self.mask_drop_value) def apply_to_bbox(self, bbox, **params): return bbox def apply_to_keypoint(self, keypoint, **params): return keypoint def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, Any]: img = params["image"] shape = img.shape if self.per_channel else img.shape[:2] rnd = np.random.RandomState(random.randint(0, 1 << 31)) # Use choice to create boolean matrix, if we will use binomial after that we will need type conversion drop_mask = rnd.choice([True, False], shape, p=[self.dropout_prob, 1 - self.dropout_prob]) drop_value: Union[float, Sequence[float], np.ndarray] if drop_mask.ndim != img.ndim: drop_mask = np.expand_dims(drop_mask, -1) if self.drop_value is None: drop_shape = 1 if is_grayscale_image(img) else int(img.shape[-1]) if img.dtype in (np.uint8, np.uint16, np.uint32): drop_value = rnd.randint(0, int(F.MAX_VALUES_BY_DTYPE[img.dtype]), drop_shape, img.dtype) elif img.dtype in [np.float32, np.double]: drop_value = rnd.uniform(0, 1, drop_shape).astype(img.dtype) else: raise ValueError(f"Unsupported dtype: {img.dtype}") else: drop_value = self.drop_value return {"drop_mask": drop_mask, "drop_value": drop_value} @property def targets_as_params(self) -> List[str]: return ["image"] def get_transform_init_args_names(self) -> Tuple[str, str, str, str]: return ("dropout_prob", "per_channel", "drop_value", "mask_drop_value") class Spatter(ImageOnlyTransform): """ Apply spatter transform. It simulates corruption which can occlude a lens in the form of rain or mud. Args: mean (float, or tuple of floats): Mean value of normal distribution for generating liquid layer. If single float it will be used as mean. If tuple of float mean will be sampled from range `[mean[0], mean[1])`. Default: (0.65). std (float, or tuple of floats): Standard deviation value of normal distribution for generating liquid layer. If single float it will be used as std. If tuple of float std will be sampled from range `[std[0], std[1])`. Default: (0.3). gauss_sigma (float, or tuple of floats): Sigma value for gaussian filtering of liquid layer. If single float it will be used as gauss_sigma. If tuple of float gauss_sigma will be sampled from range `[sigma[0], sigma[1])`. Default: (2). cutout_threshold (float, or tuple of floats): Threshold for filtering liqued layer (determines number of drops). If single float it will used as cutout_threshold. If tuple of float cutout_threshold will be sampled from range `[cutout_threshold[0], cutout_threshold[1])`. Default: (0.68). intensity (float, or tuple of floats): Intensity of corruption. If single float it will be used as intensity. If tuple of float intensity will be sampled from range `[intensity[0], intensity[1])`. Default: (0.6). mode (string, or list of strings): Type of corruption. Currently, supported options are 'rain' and 'mud'. If list is provided type of corruption will be sampled list. Default: ("rain"). color (list of (r, g, b) or dict or None): Corruption elements color. If list uses provided list as color for specified mode. If dict uses provided color for specified mode. Color for each specified mode should be provided in dict. If None uses default colors (rain: (238, 238, 175), mud: (20, 42, 63)). p (float): probability of applying the transform. Default: 0.5. Targets: image Image types: uint8, float32 Reference: | https://arxiv.org/pdf/1903.12261.pdf | https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_imagenet_c.py """ def __init__( self, mean: ScaleFloatType = 0.65, std: ScaleFloatType = 0.3, gauss_sigma: ScaleFloatType = 2, cutout_threshold: ScaleFloatType = 0.68, intensity: ScaleFloatType = 0.6, mode: Union[str, Sequence[str]] = "rain", color: Optional[Union[Sequence[int], Dict[str, Sequence[int]]]] = None, always_apply: bool = False, p: float = 0.5, ): super().__init__(always_apply=always_apply, p=p) self.mean = to_tuple(mean, mean) self.std = to_tuple(std, std) self.gauss_sigma = to_tuple(gauss_sigma, gauss_sigma) self.intensity = to_tuple(intensity, intensity) self.cutout_threshold = to_tuple(cutout_threshold, cutout_threshold) self.color = ( color if color is not None else { "rain": [238, 238, 175], "mud": [20, 42, 63], } ) self.mode = mode if isinstance(mode, (list, tuple)) else [mode] if len(set(self.mode)) > 1 and not isinstance(self.color, dict): raise ValueError(f"Unsupported color: {self.color}. Please specify color for each mode (use dict for it).") for i in self.mode: if i not in ["rain", "mud"]: raise ValueError(f"Unsupported color mode: {mode}. Transform supports only `rain` and `mud` mods.") if isinstance(self.color, dict): if i not in self.color: raise ValueError(f"Wrong color definition: {self.color}. Color for mode: {i} not specified.") if len(self.color[i]) != 3: raise ValueError( f"Unsupported color: {self.color[i]} for mode {i}. Color should be presented in RGB format." ) if isinstance(self.color, (list, tuple)): if len(self.color) != 3: raise ValueError(f"Unsupported color: {self.color}. Color should be presented in RGB format.") self.color = {self.mode[0]: self.color} def apply( self, img: np.ndarray, non_mud: Optional[np.ndarray] = None, mud: Optional[np.ndarray] = None, drops: Optional[np.ndarray] = None, mode: str = "", **params ) -> np.ndarray: return F.spatter(img, non_mud, mud, drops, mode) @property def targets_as_params(self) -> List[str]: return ["image"] def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, Any]: h, w = params["image"].shape[:2] mean = random.uniform(self.mean[0], self.mean[1]) std = random.uniform(self.std[0], self.std[1]) cutout_threshold = random.uniform(self.cutout_threshold[0], self.cutout_threshold[1]) sigma = random.uniform(self.gauss_sigma[0], self.gauss_sigma[1]) mode = random.choice(self.mode) intensity = random.uniform(self.intensity[0], self.intensity[1]) color = np.array(self.color[mode]) / 255.0 liquid_layer = random_utils.normal(size=(h, w), loc=mean, scale=std) liquid_layer = gaussian_filter(liquid_layer, sigma=sigma, mode="nearest") liquid_layer[liquid_layer < cutout_threshold] = 0 if mode == "rain": liquid_layer = (liquid_layer * 255).astype(np.uint8) dist = 255 - cv2.Canny(liquid_layer, 50, 150) dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5) _, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC) dist = blur(dist, 3).astype(np.uint8) dist = F.equalize(dist) ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]]) dist = F.convolve(dist, ker) dist = blur(dist, 3).astype(np.float32) m = liquid_layer * dist m *= 1 / np.max(m, axis=(0, 1)) drops = m[:, :, None] * color * intensity mud = None non_mud = None else: m = np.where(liquid_layer > cutout_threshold, 1, 0) m = gaussian_filter(m.astype(np.float32), sigma=sigma, mode="nearest") m[m < 1.2 * cutout_threshold] = 0 m = m[..., np.newaxis] mud = m * color non_mud = 1 - m drops = None return { "non_mud": non_mud, "mud": mud, "drops": drops, "mode": mode, } def get_transform_init_args_names(self) -> Tuple[str, str, str, str, str, str, str]: return "mean", "std", "gauss_sigma", "intensity", "cutout_threshold", "mode", "color"