from __future__ import absolute_import import random from copy import deepcopy from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union, cast from warnings import warn import cv2 import numpy as np from .serialization import Serializable, get_shortest_class_fullname from .utils import format_args __all__ = [ "to_tuple", "BasicTransform", "DualTransform", "ImageOnlyTransform", "NoOp", "BoxType", "KeypointType", "ImageColorType", "ScaleFloatType", "ScaleIntType", "ImageColorType", ] NumType = Union[int, float, np.ndarray] BoxInternalType = Tuple[float, float, float, float] BoxType = Union[BoxInternalType, Tuple[float, float, float, float, Any]] KeypointInternalType = Tuple[float, float, float, float] KeypointType = Union[KeypointInternalType, Tuple[float, float, float, float, Any]] ImageColorType = Union[float, Sequence[float]] ScaleFloatType = Union[float, Tuple[float, float]] ScaleIntType = Union[int, Tuple[int, int]] FillValueType = Optional[Union[int, float, Sequence[int], Sequence[float]]] def to_tuple(param, low=None, bias=None): """Convert input argument to min-max tuple Args: param (scalar, tuple or list of 2+ elements): Input value. If value is scalar, return value would be (offset - value, offset + value). If value is tuple, return value would be value + offset (broadcasted). low: Second element of tuple can be passed as optional argument bias: An offset factor added to each element """ if low is not None and bias is not None: raise ValueError("Arguments low and bias are mutually exclusive") if param is None: return param if isinstance(param, (int, float)): if low is None: param = -param, +param else: param = (low, param) if low < param else (param, low) elif isinstance(param, Sequence): if len(param) != 2: raise ValueError("to_tuple expects 1 or 2 values") param = tuple(param) else: raise ValueError("Argument param must be either scalar (int, float) or tuple") if bias is not None: return tuple(bias + x for x in param) return tuple(param) class BasicTransform(Serializable): call_backup = None interpolation: Any fill_value: Any mask_fill_value: Any def __init__(self, always_apply: bool = False, p: float = 0.5): self.p = p self.always_apply = always_apply self._additional_targets: Dict[str, str] = {} # replay mode params self.deterministic = False self.save_key = "replay" self.params: Dict[Any, Any] = {} self.replay_mode = False self.applied_in_replay = False def __call__(self, *args, force_apply: bool = False, **kwargs) -> Dict[str, Any]: if args: raise KeyError("You have to pass data to augmentations as named arguments, for example: aug(image=image)") if self.replay_mode: if self.applied_in_replay: return self.apply_with_params(self.params, **kwargs) return kwargs if (random.random() < self.p) or self.always_apply or force_apply: params = self.get_params() if self.targets_as_params: assert all(key in kwargs for key in self.targets_as_params), "{} requires {}".format( self.__class__.__name__, self.targets_as_params ) targets_as_params = {k: kwargs[k] for k in self.targets_as_params} params_dependent_on_targets = self.get_params_dependent_on_targets(targets_as_params) params.update(params_dependent_on_targets) if self.deterministic: if self.targets_as_params: warn( self.get_class_fullname() + " could work incorrectly in ReplayMode for other input data" " because its' params depend on targets." ) kwargs[self.save_key][id(self)] = deepcopy(params) return self.apply_with_params(params, **kwargs) return kwargs def apply_with_params(self, params: Dict[str, Any], **kwargs) -> Dict[str, Any]: # skipcq: PYL-W0613 if params is None: return kwargs params = self.update_params(params, **kwargs) res = {} for key, arg in kwargs.items(): if arg is not None: target_function = self._get_target_function(key) target_dependencies = {k: kwargs[k] for k in self.target_dependence.get(key, [])} res[key] = target_function(arg, **dict(params, **target_dependencies)) else: res[key] = None return res def set_deterministic(self, flag: bool, save_key: str = "replay") -> "BasicTransform": assert save_key != "params", "params save_key is reserved" self.deterministic = flag self.save_key = save_key return self def __repr__(self) -> str: state = self.get_base_init_args() state.update(self.get_transform_init_args()) return "{name}({args})".format(name=self.__class__.__name__, args=format_args(state)) def _get_target_function(self, key: str) -> Callable: transform_key = key if key in self._additional_targets: transform_key = self._additional_targets.get(key, key) target_function = self.targets.get(transform_key, lambda x, **p: x) return target_function def apply(self, img: np.ndarray, **params) -> np.ndarray: raise NotImplementedError def get_params(self) -> Dict: return {} @property def targets(self) -> Dict[str, Callable]: # you must specify targets in subclass # for example: ('image', 'mask') # ('image', 'boxes') raise NotImplementedError def update_params(self, params: Dict[str, Any], **kwargs) -> Dict[str, Any]: if hasattr(self, "interpolation"): params["interpolation"] = self.interpolation if hasattr(self, "fill_value"): params["fill_value"] = self.fill_value if hasattr(self, "mask_fill_value"): params["mask_fill_value"] = self.mask_fill_value params.update({"cols": kwargs["image"].shape[1], "rows": kwargs["image"].shape[0]}) return params @property def target_dependence(self) -> Dict: return {} def add_targets(self, additional_targets: Dict[str, str]): """Add targets to transform them the same way as one of existing targets ex: {'target_image': 'image'} ex: {'obj1_mask': 'mask', 'obj2_mask': 'mask'} by the way you must have at least one object with key 'image' Args: additional_targets (dict): keys - new target name, values - old target name. ex: {'image2': 'image'} """ self._additional_targets = additional_targets @property def targets_as_params(self) -> List[str]: return [] def get_params_dependent_on_targets(self, params: Dict[str, Any]) -> Dict[str, Any]: raise NotImplementedError( "Method get_params_dependent_on_targets is not implemented in class " + self.__class__.__name__ ) @classmethod def get_class_fullname(cls) -> str: return get_shortest_class_fullname(cls) @classmethod def is_serializable(cls): return True def get_transform_init_args_names(self) -> Tuple[str, ...]: raise NotImplementedError( "Class {name} is not serializable because the `get_transform_init_args_names` method is not " "implemented".format(name=self.get_class_fullname()) ) def get_base_init_args(self) -> Dict[str, Any]: return {"always_apply": self.always_apply, "p": self.p} def get_transform_init_args(self) -> Dict[str, Any]: return {k: getattr(self, k) for k in self.get_transform_init_args_names()} def _to_dict(self) -> Dict[str, Any]: state = {"__class_fullname__": self.get_class_fullname()} state.update(self.get_base_init_args()) state.update(self.get_transform_init_args()) return state def get_dict_with_id(self) -> Dict[str, Any]: d = self._to_dict() d["id"] = id(self) return d class DualTransform(BasicTransform): """Transform for segmentation task.""" @property def targets(self) -> Dict[str, Callable]: return { "image": self.apply, "mask": self.apply_to_mask, "masks": self.apply_to_masks, "bboxes": self.apply_to_bboxes, "keypoints": self.apply_to_keypoints, } def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType: raise NotImplementedError("Method apply_to_bbox is not implemented in class " + self.__class__.__name__) def apply_to_keypoint(self, keypoint: KeypointInternalType, **params) -> KeypointInternalType: raise NotImplementedError("Method apply_to_keypoint is not implemented in class " + self.__class__.__name__) def apply_to_bboxes(self, bboxes: Sequence[BoxType], **params) -> List[BoxType]: return [self.apply_to_bbox(tuple(bbox[:4]), **params) + tuple(bbox[4:]) for bbox in bboxes] # type: ignore def apply_to_keypoints(self, keypoints: Sequence[KeypointType], **params) -> List[KeypointType]: return [ # type: ignore self.apply_to_keypoint(tuple(keypoint[:4]), **params) + tuple(keypoint[4:]) # type: ignore for keypoint in keypoints ] def apply_to_mask(self, img: np.ndarray, **params) -> np.ndarray: return self.apply(img, **{k: cv2.INTER_NEAREST if k == "interpolation" else v for k, v in params.items()}) def apply_to_masks(self, masks: Sequence[np.ndarray], **params) -> List[np.ndarray]: return [self.apply_to_mask(mask, **params) for mask in masks] class ImageOnlyTransform(BasicTransform): """Transform applied to image only.""" @property def targets(self) -> Dict[str, Callable]: return {"image": self.apply} class NoOp(DualTransform): """Does nothing""" def apply_to_keypoint(self, keypoint: KeypointInternalType, **params) -> KeypointInternalType: return keypoint def apply_to_bbox(self, bbox: BoxInternalType, **params) -> BoxInternalType: return bbox def apply(self, img: np.ndarray, **params) -> np.ndarray: return img def apply_to_mask(self, img: np.ndarray, **params) -> np.ndarray: return img def get_transform_init_args_names(self) -> Tuple: return ()