""" Copyright (c) Microsoft Corporation. Licensed under the MIT license. This file contains primitives for multi-gpu communication. This is useful when doing distributed training. """ import pickle import time import torch import torch.distributed as dist from comfy.model_management import get_torch_device device = get_torch_device() def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() def gather_on_master(data): """Same as all_gather, but gathers data on master process only, using CPU. Thus, this does not work with NCCL backend unless they add CPU support. The memory consumption of this function is ~ 3x of data size. While in principal, it should be ~2x, it's not easy to force Python to release memory immediately and thus, peak memory usage could be up to 3x. """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) # trying to optimize memory, but in fact, it's not guaranteed to be released del data storage = torch.ByteStorage.from_buffer(buffer) del buffer tensor = torch.ByteTensor(storage) # obtain Tensor size of each rank local_size = torch.LongTensor([tensor.numel()]) size_list = [torch.LongTensor([0]) for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)) tensor = torch.cat((tensor, padding), dim=0) del padding if is_main_process(): tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,))) dist.gather(tensor, gather_list=tensor_list, dst=0) del tensor else: dist.gather(tensor, gather_list=[], dst=0) del tensor return data_list = [] for tensor in tensor_list: buffer = tensor.cpu().numpy().tobytes() del tensor data_list.append(pickle.loads(buffer)) del buffer return data_list def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to(device) # obtain Tensor size of each rank local_size = torch.LongTensor([tensor.numel()]).to(device) size_list = [torch.LongTensor([0]).to(device) for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to(device)) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to(device) tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that process with rank 0 has the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict