from __future__ import division import numpy as np import torch import torchvision.transforms.functional as F def img_to_tensor(im, normalize=None): tensor = torch.from_numpy(np.moveaxis(im / (255.0 if im.dtype == np.uint8 else 1), -1, 0).astype(np.float32)) if normalize is not None: return F.normalize(tensor, **normalize) return tensor def mask_to_tensor(mask, num_classes, sigmoid): if num_classes > 1: if not sigmoid: # softmax long_mask = np.zeros((mask.shape[:2]), dtype=np.int64) if len(mask.shape) == 3: for c in range(mask.shape[2]): long_mask[mask[..., c] > 0] = c else: long_mask[mask > 127] = 1 long_mask[mask == 0] = 0 mask = long_mask else: mask = np.moveaxis(mask / (255.0 if mask.dtype == np.uint8 else 1), -1, 0).astype(np.float32) else: mask = np.expand_dims(mask / (255.0 if mask.dtype == np.uint8 else 1), 0).astype(np.float32) return torch.from_numpy(mask)