''' Copyright 2017 Javier Romero, Dimitrios Tzionas, Michael J Black and the Max Planck Gesellschaft. All rights reserved. This software is provided for research purposes only. By using this software you agree to the terms of the MANO/SMPL+H Model license here http://mano.is.tue.mpg.de/license More information about MANO/SMPL+H is available at http://mano.is.tue.mpg.de. For comments or questions, please email us at: mano@tue.mpg.de About this file: ================ This file defines a wrapper for the loading functions of the MANO model. Modules included: - load_model: loads the MANO model from a given file location (i.e. a .pkl file location), or a dictionary object. ''' def col(A): return A.reshape((-1, 1)) def MatVecMult(mtx, vec): result = mtx.dot(col(vec.ravel())).ravel() if len(vec.shape) > 1 and vec.shape[1] > 1: result = result.reshape((-1, vec.shape[1])) return result def ready_arguments(fname_or_dict, posekey4vposed='pose'): import numpy as np import pickle from custom_manopth.posemapper import posemap if not isinstance(fname_or_dict, dict): dd = pickle.load(open(fname_or_dict, 'rb'), encoding='latin1') # dd = pickle.load(open(fname_or_dict, 'rb')) else: dd = fname_or_dict want_shapemodel = 'shapedirs' in dd nposeparms = dd['kintree_table'].shape[1] * 3 if 'trans' not in dd: dd['trans'] = np.zeros(3) if 'pose' not in dd: dd['pose'] = np.zeros(nposeparms) if 'shapedirs' in dd and 'betas' not in dd: dd['betas'] = np.zeros(dd['shapedirs'].shape[-1]) for s in [ 'v_template', 'weights', 'posedirs', 'pose', 'trans', 'shapedirs', 'betas', 'J' ]: if (s in dd) and not hasattr(dd[s], 'dterms'): dd[s] = np.array(dd[s]) assert (posekey4vposed in dd) if want_shapemodel: dd['v_shaped'] = dd['shapedirs'].dot(dd['betas']) + dd['v_template'] v_shaped = dd['v_shaped'] J_tmpx = MatVecMult(dd['J_regressor'], v_shaped[:, 0]) J_tmpy = MatVecMult(dd['J_regressor'], v_shaped[:, 1]) J_tmpz = MatVecMult(dd['J_regressor'], v_shaped[:, 2]) dd['J'] = np.vstack((J_tmpx, J_tmpy, J_tmpz)).T pose_map_res = posemap(dd['bs_type'])(dd[posekey4vposed]) dd['v_posed'] = v_shaped + dd['posedirs'].dot(pose_map_res) else: pose_map_res = posemap(dd['bs_type'])(dd[posekey4vposed]) dd_add = dd['posedirs'].dot(pose_map_res) dd['v_posed'] = dd['v_template'] + dd_add return dd def load_model(fname_or_dict, ncomps=6, flat_hand_mean=False, v_template=None): ''' This model loads the fully articulable HAND SMPL model, and replaces the pose DOFS by ncomps from PCA''' from custom_manopth.verts import verts_core import numpy as np import pickle import scipy.sparse as sp np.random.seed(1) if not isinstance(fname_or_dict, dict): smpl_data = pickle.load(open(fname_or_dict, 'rb'), encoding='latin1') # smpl_data = pickle.load(open(fname_or_dict, 'rb')) else: smpl_data = fname_or_dict rot = 3 # for global orientation!!! hands_components = smpl_data['hands_components'] hands_mean = np.zeros(hands_components.shape[ 1]) if flat_hand_mean else smpl_data['hands_mean'] hands_coeffs = smpl_data['hands_coeffs'][:, :ncomps] selected_components = np.vstack((hands_components[:ncomps])) hands_mean = hands_mean.copy() pose_coeffs = np.zeros(rot + selected_components.shape[0]) full_hand_pose = pose_coeffs[rot:(rot + ncomps)].dot(selected_components) smpl_data['fullpose'] = np.concatenate((pose_coeffs[:rot], hands_mean + full_hand_pose)) smpl_data['pose'] = pose_coeffs Jreg = smpl_data['J_regressor'] if not sp.issparse(Jreg): smpl_data['J_regressor'] = (sp.csc_matrix( (Jreg.data, (Jreg.row, Jreg.col)), shape=Jreg.shape)) # slightly modify ready_arguments to make sure that it uses the fullpose # (which will NOT be pose) for the computation of posedirs dd = ready_arguments(smpl_data, posekey4vposed='fullpose') # create the smpl formula with the fullpose, # but expose the PCA coefficients as smpl.pose for compatibility args = { 'pose': dd['fullpose'], 'v': dd['v_posed'], 'J': dd['J'], 'weights': dd['weights'], 'kintree_table': dd['kintree_table'], 'xp': np, 'want_Jtr': True, 'bs_style': dd['bs_style'], } result_previous, meta = verts_core(**args) result = result_previous + dd['trans'].reshape((1, 3)) result.no_translation = result_previous if meta is not None: for field in ['Jtr', 'A', 'A_global', 'A_weighted']: if (hasattr(meta, field)): setattr(result, field, getattr(meta, field)) setattr(result, 'Jtr', meta) if hasattr(result, 'Jtr'): result.J_transformed = result.Jtr + dd['trans'].reshape((1, 3)) for k, v in dd.items(): setattr(result, k, v) if v_template is not None: result.v_template[:] = v_template return result if __name__ == '__main__': load_model()