import base64 import json import os import uuid from datetime import datetime from pathlib import Path import math import pandas as pd import pytz import streamlit as st from datasets import Dataset, load_dataset from huggingface_hub import CommitScheduler # File paths as constants USERS_JSON = 'leaders/users.json' MATCHES_JSON = 'matches.json' OUTCOMES_JSON = 'match_outcomes.json' OUTCOMES = 'outcomes/match_outcomes.json' BONUS_JSON = 'bonus/redistributed_matches.json' PLAYERS_JSON = 'players.json' image_path = 'ipl_image.png' PREDICTIONS_FOLDER = Path("predictions") PREDICTIONS_FOLDER.mkdir(parents=True, exist_ok=True) users_file = Path("leaders") / f"users.json" USERS_FOLDER = users_file.parent USERS_FOLDER.mkdir(parents=True, exist_ok=True) outcomes_file = Path("outcomes") / f"match_outcomes.json" OUTCOMES_FOLDER = outcomes_file.parent OUTCOMES_FOLDER.mkdir(parents=True, exist_ok=True) redistribution_file = Path("bonus") / f"redistributed_matches.json" REDISTRIBUTED_FOLDER = redistribution_file.parent REDISTRIBUTED_FOLDER.mkdir(parents=True, exist_ok=True) # Initialize CommitScheduler scheduler = CommitScheduler( repo_id="DIS_IPL_Preds", repo_type="dataset", folder_path=PREDICTIONS_FOLDER, # Local folder where predictions are saved temporarily path_in_repo="predictions", # Path in dataset repo where predictions will be saved every=720, # Push every 240 minutes (4 hours) ) # Initialize CommitScheduler scheduler = CommitScheduler( repo_id="DIS_IPL_Leads", repo_type="dataset", folder_path=USERS_FOLDER, # Local folder where users are saved temporarily path_in_repo="leaders", # Path in dataset repo where predictions will be saved every=720, # Push every 240 minutes (4 hours) ) # Initialize CommitScheduler scheduler = CommitScheduler( repo_id="DIS_IPL_Outcomes", repo_type="dataset", folder_path=OUTCOMES_FOLDER, # Local folder where users are saved temporarily path_in_repo="outcomes", # Path in dataset repo where predictions will be saved every=720, # Push every 240 minutes (4 hours) ) def load_data(file_path): """ Load data from a JSON or CSV file. Args: file_path (str): The path to the file to load. Returns: pd.DataFrame or dict: The loaded data. """ try: if file_path.endswith('.json'): with open(file_path, 'r') as file: return json.load(file) elif file_path.endswith('.csv'): return pd.read_csv(file_path) except FileNotFoundError: if file_path.endswith('.json'): return {} elif file_path.endswith('.csv'): return pd.DataFrame() def get_base64_of_image(path): with open(path, "rb") as image_file: return base64.b64encode(image_file.read()).decode() # Get today's date in IST to load today's match def get_current_date_ist(): tz_IST = pytz.timezone('Asia/Kolkata') datetime_ist = datetime.now(tz_IST) return datetime_ist.strftime('%Y-%m-%d') # Function to get matches for today def get_today_matches(): today = get_current_date_ist() matches = load_data(MATCHES_JSON) today_matches = [match for match in matches if match['date'] == today] return today_matches # Function to check if prediction submission is allowed def is_submission_allowed(match_id): matches = load_data(MATCHES_JSON) # This loads matches correctly with IST times for match in matches: if match["match_id"] == match_id: # Parse the match start time in IST tz_IST = pytz.timezone('Asia/Kolkata') match_datetime_str = f'{match["date"]} {match["time"]}' # The match time string is like "2024-03-21 7:30 PM" match_datetime = datetime.strptime(match_datetime_str, "%Y-%m-%d %I:%M %p") match_datetime = tz_IST.localize(match_datetime) # Set the timezone to IST # Get the current time in IST current_datetime = datetime.now(tz_IST) if current_datetime > match_datetime: return False else: return True return False # If match_id not found, default to False # Submit prediction function def submit_prediction( user_name, match_id, predicted_winner, predicted_motm, bid_points, min_bid_points, max_bid_points, wildcard_used ): # Validation for user selection if user_name == "Select a user...": st.warning("Please select a valid user.") return # Check if prediction submission is allowed for the match if not is_submission_allowed(match_id): st.error("Prediction submission time has passed. Predictions can't be submitted after match start.") return if bid_points < min_bid_points: st.error( f"Oops, your bid is too low! 🚫 Minimum allowed bid is {min_bid_points} (10% of your points)." ) return if bid_points > max_bid_points: st.error( f"Oops, your bid is too high! 🚫 Maximum allowed bid is {max_bid_points}." ) return prediction_id = uuid.uuid4().hex prediction_time = datetime.now().strftime('%Y-%m-%d') prediction_data = { 'prediction_id': prediction_id, 'user_name': user_name, 'match_id': match_id, 'predicted_winner': predicted_winner, 'predicted_motm': predicted_motm, 'bid_points': bid_points, 'wildcard_used': wildcard_used if wildcard_used != "None" else None, 'prediction_date': prediction_time # Include the prediction time } # Construct the filename to include match_id for easier retrieval prediction_file_name = f"prediction_{match_id}_{user_name}.json" prediction_file = PREDICTIONS_FOLDER / prediction_file_name # Load existing predictions for the user and match, if any existing_predictions = [] if prediction_file.exists(): with prediction_file.open("r") as file: for line in file: existing_predictions.append(json.loads(line.strip())) # Update existing prediction if it exists for the same user and match prediction_updated = False for existing_prediction in existing_predictions: if existing_prediction['user_name'] == user_name and existing_prediction['match_id'] == match_id: existing_prediction.update(prediction_data) prediction_updated = True break # Save the updated predictions back to the file with scheduler.lock: if not prediction_updated: # Append the new prediction if it doesn't already exist with prediction_file.open("a") as file: file.write(json.dumps(prediction_data)) file.write("\n") else: with prediction_file.open("w") as file: for prediction in existing_predictions: file.write(json.dumps(prediction)) file.write("\n") st.success("Prediction submitted successfully!") def get_user_total_points(user_name): # users_dataset = load_dataset("Jay-Rajput/DIS_IPL_Leads", split="train") # users = users_dataset.to_dict() users = load_users(USERS_JSON) return users.get(user_name, {}).get('points') def calculate_min_max_bid_points(user_name): total_points = get_user_total_points(user_name) min_bid_points = math.ceil(total_points * 0.10) # round up max_bid_points = total_points # math.floor(total_points * 0.50) # round down return int(min_bid_points), int(max_bid_points) def load_users(USERS_JSON): try: with open(USERS_JSON, 'r') as file: return json.load(file) except FileNotFoundError: return {} def load_bonus(BONUS_JSON): try: with open(BONUS_JSON, 'r') as file: return json.load(file) except FileNotFoundError: return [] def user_selection_and_prediction(): users_data = load_users(USERS_JSON) users = list(users_data) user_name = st.selectbox("Select User", ["Select a user..."] + users) min_bid_points, max_bid_points = None, None if user_name != "Select a user...": min_bid_points, max_bid_points = calculate_min_max_bid_points(user_name) st.write(f"Bid points range you can submit: {min_bid_points} to {max_bid_points}") # Load user wildcard status user_wildcards = users_data.get(user_name, {}).get('wildcard', [0, 0, 0]) available_wildcards = [] if user_wildcards[0] == 0: available_wildcards.append("PowerMoM") if user_wildcards[1] == 0: available_wildcards.append("TripleE") if user_wildcards[2] == 0: available_wildcards.append("SwitchHit") available_wildcards = ["None"] + available_wildcards matches = get_today_matches() if matches: match_choice = st.selectbox("Select Today's Match", matches, format_func=lambda match: f"{match['teams'][0]} vs {match['teams'][1]}") match_id = match_choice['match_id'] teams = match_choice['teams'] predicted_winner = st.selectbox("Predicted Winner", teams) player_list = load_data(PLAYERS_JSON) predicted_motm = "" if predicted_winner in player_list: players = player_list[predicted_winner] predicted_motm = st.selectbox("Predicted Man of the Match", players) bid_points = st.number_input( "Bid Points", value=0, step=1, format="%d" ) wildcard_used = st.selectbox("Select Wildcard (Optional)", available_wildcards) if st.button("Submit Prediction"): submit_prediction(user_name, match_id, predicted_winner, predicted_motm, bid_points, min_bid_points, max_bid_points, wildcard_used) else: st.write("No matches are scheduled for today.") def display_predictions(): if st.button("Show Predictions"): all_predictions = [] # Check if the directory exists if not os.path.exists(PREDICTIONS_FOLDER): st.write("No predictions directory found.") return # List all JSON files in the directory for filename in os.listdir(PREDICTIONS_FOLDER): if filename.endswith('.json'): file_path = os.path.join(PREDICTIONS_FOLDER, filename) # Read each JSON file and append its contents to the list with open(file_path, 'r') as file: prediction = json.load(file) all_predictions.append(prediction) # Convert the list of dictionaries to a DataFrame predictions_df = pd.DataFrame(all_predictions) if not predictions_df.empty: predictions_df['prediction_date'] = predictions_df.apply(lambda x: datetime.strptime(x['prediction_date'], '%Y-%m-%d'), axis=1) # Filter for today's predictions today_str = datetime.now().strftime('%Y-%m-%d') todays_predictions = predictions_df[predictions_df['prediction_date'] == today_str] # Remove the 'prediction_id' column if it exists if 'prediction_id' in todays_predictions.columns: todays_predictions = todays_predictions.drop(columns=['prediction_id', 'prediction_date']) st.dataframe(todays_predictions, hide_index=True) else: st.write("No predictions for today's matches yet.") def display_leaderboard(): if st.button("Show Leaderboard"): try: # Load the 'leaders' configuration dataset = load_dataset("Jay-Rajput/DIS_IPL_Leads", split='train') users_data = [] if dataset: for user, points_dict in dataset[0].items(): points = points_dict.get("points", 0) last_5_results = " ".join(points_dict.get("last_5_results", ["⚪"] * 5)) # Default: 5 white circles bonus = points_dict.get("redistributed_bonus", 0) bonus_display = f"+{bonus}" if bonus > 0 else "" wildcard_flags = points_dict.get("wildcard", [0, 0, 0]) wildcard_display = [] if wildcard_flags[0] == 1: wildcard_display.append("🟡PM") # PowerMoM if wildcard_flags[1] == 1: wildcard_display.append("🔺3E") # TripleE if wildcard_flags[2] == 1: wildcard_display.append("🔁SH") # SwitchHit users_data.append({ 'User': user, 'Points': points, 'TOLBOG Wallet': bonus_display, 'Wildcards Used': ", ".join(wildcard_display), 'Last 5 Bids': last_5_results }) else: st.warning("No leaderboard data found.") leaderboard = pd.DataFrame(users_data) # Sort DataFrame by points in descending order leaderboard = leaderboard.sort_values(by='Points', ascending=False) # Add a 'Rank' column starting from 1 leaderboard['Rank'] = range(1, len(leaderboard) + 1) # Select and order the columns for display leaderboard = leaderboard[['Rank', 'User', 'Points', 'TOLBOG Wallet', 'Wildcards Used', 'Last 5 Bids']] st.dataframe(leaderboard, hide_index=True) except Exception as e: st.write("Failed to load leaderboard data: ", str(e)) # Streamlit UI encoded_image = get_base64_of_image(image_path) custom_css = f""" """ # Apply custom CSS st.markdown(custom_css, unsafe_allow_html=True) # Use the custom class in a div with your title st.markdown('
DIS IPL Match Predictions
', unsafe_allow_html=True) st.write("🏆 Predict, Compete, and Win 🏏 - Where Every Guess Counts! 🏆") user_guide_content = """ ### 📘 User Guide #### Submitting Predictions - **Match Selection**: Choose the match you want to predict from today's available matches. - **Team and Player Prediction**: Select the team you predict will win and the "Man of the Match". - **Bid Points**: Enter the number of points you wish to bid on your prediction. Remember, the maximum you can bid is capped at **20% of your total points**. #### Scoring System - **Winning Team Prediction**: - ✅ **Correct Prediction**: You earn **2000 points** plus your bid amount. - ❌ **Incorrect Prediction**: You lose **200 points** plus your bid amount. - **Man of the Match Prediction**: - ✅ **Correct Prediction**: You earn **an additional 500 points**. - ❌ **Incorrect Prediction**: No penalty. - **No Prediction Submitted**: - ❌ **You lose 10% of your total points** automatically for not submitting a prediction. #### Bid Point Constraints - You cannot bid less then 10% and more than 50% of your current total points. - Bid points will be doubled if your prediction is correct, and deducted if incorrect. #### Rules for Submission - **Predictions must be submitted before the match starts**. - **Only one prediction per match is allowed**. - **Review your prediction carefully before submission, as it cannot be changed once submitted**. #### 🔴🟢⚪ Match Performance Tracking - After each match, your last **5 predictions will be tracked** and displayed on the leaderboard: - 🟢 **Green** → Correct prediction. - 🔴 **Red** → Wrong prediction. - ⚪ **White** → No prediction submitted. 🚀 **Compete, strategize, and climb the leaderboard!** """ # User Guide as an expander with st.expander("User Guide 📘"): st.markdown(user_guide_content) with st.expander("Submit Prediction 📝"): user_selection_and_prediction() with st.expander("Predictions 🔍"): display_predictions() with st.expander("Leaderboard 🏆"): display_leaderboard() ############################# Admin Panel ################################## ADMIN_PASSPHRASE = "admin123" def fetch_latest_predictions(match_id): dataset = load_dataset("Jay-Rajput/DIS_IPL_Preds", split="train") # Convert the dataset to a pandas DataFrame df = pd.DataFrame(dataset) # Ensure the DataFrame is not empty and contains the required columns if not df.empty and {'user_name', 'match_id'}.issubset(df.columns): # Filter rows by 'match_id' filtered_df = df[df['match_id'] == match_id] # Drop duplicate rows based on 'user_name' unique_df = filtered_df.drop_duplicates(subset=['user_name']) return unique_df else: return pd.DataFrame() def update_leaderboard_and_outcomes(match_id, winning_team, man_of_the_match, outcome_only=False): outcomes = load_dataset("Jay-Rajput/DIS_IPL_Outcomes", split="train") outcomes_df = pd.DataFrame(outcomes) # Update or add match outcome outcome_exists = False for idx, outcome in outcomes_df.iterrows(): if outcome['match_id'] == match_id: outcomes_df.at[idx, 'winning_team'] = winning_team outcomes_df.at[idx, 'man_of_the_match'] = man_of_the_match outcome_exists = True break if not outcome_exists: new_outcome = {"match_id": match_id, "winning_team": winning_team, "man_of_the_match": man_of_the_match} outcomes_df = pd.concat([outcomes_df, pd.DataFrame([new_outcome])], ignore_index=True) outcomes = Dataset.from_pandas(outcomes_df) if not outcome_only: predictions = fetch_latest_predictions(match_id) users = load_dataset("Jay-Rajput/DIS_IPL_Leads", split="train") users_df = pd.DataFrame(users) submitted_users = set(predictions['user_name']) # Capture previous leaderboard (top 3 users and their points) prev_scores = [(user, users_df[user][0]['points']) for user in users_df.columns] prev_scores.sort(key=lambda x: x[1], reverse=True) prev_top_3 = prev_scores[:3] top3_usernames = [user for user, _ in prev_top_3] lost_points_by_top3 = 0 user_outcomes = {} # Step 1: Apply current match outcomes for user_name in users_df.columns: user_data = users_df[user_name][0] user_points = user_data['points'] user_initial_points = user_points user_wildcards = user_data.get('wildcard', [0, 0, 0]) if user_name in submitted_users: prediction = predictions[predictions['user_name'] == user_name].iloc[0] predicted_winner = prediction['predicted_winner'] predicted_motm = prediction['predicted_motm'] bid_points = prediction['bid_points'] wildcard_used = prediction.get('wildcard_used') earned_points = 0 if predicted_winner == winning_team: earned_points += 2000 + bid_points result_indicator = "🟢" if predicted_motm == man_of_the_match: earned_points += 500 if wildcard_used == "PowerMoM": earned_points += 1000 # MOM bonus tripled (500 -> 1500) # Extra performance logic placeholder (e.g., 1000 for century etc.) if wildcard_used == "TripleE": earned_points *= 3 else: earned_points -= 200 + bid_points result_indicator = "🔴" if user_name in top3_usernames: lost_points_by_top3 += (200 + bid_points) if wildcard_used == "PowerMoM" and predicted_motm != man_of_the_match: user_wildcards[0] = 1 # Mark PowerMoM used anyway elif wildcard_used == "TripleE": user_wildcards[1] = 1 elif wildcard_used == "SwitchHit": user_wildcards[2] = 1 user_points += earned_points else: penalty = int(0.10 * user_points) user_points -= penalty result_indicator = "⚪" if user_name in top3_usernames: lost_points_by_top3 += penalty user_points = max(user_points, 0) user_outcomes[user_name] = { "updated_points": user_points, "result_indicator": result_indicator, "initial_points": user_initial_points } users_df[user_name][0]['wildcard'] = user_wildcards # Step 2: Build new leaderboard after applying outcome new_leaderboard = [(u, d["updated_points"]) for u, d in user_outcomes.items()] new_leaderboard.sort(key=lambda x: x[1], reverse=True) third_place_points = new_leaderboard[2][1] if len(new_leaderboard) >= 3 else 0 # Step 3: Redistribute lost points using difference-from-3rd-place logic (only for users who submitted prediction) redistribution_pool = lost_points_by_top3 redistribution_weights = {} redistribution_total_weight = 0 for user, data in user_outcomes.items(): if user not in top3_usernames and user in submitted_users: diff_from_3rd = max(third_place_points - data['updated_points'], 0) redistribution_weights[user] = diff_from_3rd redistribution_total_weight += diff_from_3rd bonus_distribution = {} for user, weight in redistribution_weights.items(): if redistribution_total_weight == 0: bonus = 0 else: bonus = int(redistribution_pool * (weight / redistribution_total_weight)) bonus_distribution[user] = bonus # Step 4: Apply bonus and update dataset for user in users_df.columns: base_points = user_outcomes[user]["updated_points"] bonus = bonus_distribution.get(user, 0) final_points = base_points + bonus users_df[user][0]['points'] = final_points users_df[user][0]['redistributed_bonus'] = bonus # Maintain last 5 results result = user_outcomes[user]["result_indicator"] if "last_5_results" not in users_df[user][0]: users_df[user][0]["last_5_results"] = [] users_df[user][0]["last_5_results"].insert(0, result) users_df[user][0]["last_5_results"] = users_df[user][0]["last_5_results"][:5] # Save updated leaderboard users.to_json(USERS_JSON) updated_dataset = Dataset.from_pandas(users_df) updated_dataset.push_to_hub("Jay-Rajput/DIS_IPL_Leads", split="train") # Save match outcome outcomes.to_json(OUTCOMES) outcomes.push_to_hub("Jay-Rajput/DIS_IPL_Outcomes", split="train") # def update_leaderboard_and_outcomes(match_id, winning_team, man_of_the_match, outcome_only=False): # # Load existing match outcomes # outcomes = load_dataset("Jay-Rajput/DIS_IPL_Outcomes", split="train") # outcomes_df = pd.DataFrame(outcomes) # # Directly update or add the match outcome # outcome_exists = False # for idx, outcome in outcomes_df.iterrows(): # if outcome['match_id'] == match_id: # outcomes_df.at[idx, 'winning_team'] = winning_team # outcomes_df.at[idx, 'man_of_the_match'] = man_of_the_match # outcome_exists = True # break # if not outcome_exists: # new_outcome = {"match_id": match_id, "winning_team": winning_team, "man_of_the_match": man_of_the_match} # outcomes_df = pd.concat([outcomes_df, pd.DataFrame([new_outcome])], ignore_index=True) # outcomes = Dataset.from_pandas(outcomes_df) # if not outcome_only: # Update user scores only if outcome_only is False # # Load predictions only if necessary # predictions = fetch_latest_predictions(match_id) # # Load users' data only if necessary # users = load_dataset("Jay-Rajput/DIS_IPL_Leads", split="train") # users_df = pd.DataFrame(users) # # Update user points based on prediction accuracy # users_with_predictions = set(predictions['user_name']) # for user_name in users_df.columns: # user_points = users_df[user_name][0]['points'] # if user_name in users_with_predictions: # prediction = predictions[predictions['user_name'] == user_name].iloc[0] # predicted_winner = prediction['predicted_winner'] # predicted_motm = prediction['predicted_motm'] # bid_points = prediction['bid_points'] # # Update points based on prediction accuracy # if predicted_winner == winning_team: # user_points += 2000 + bid_points # result_indicator = "🟢" # Correct Prediction # if predicted_motm == man_of_the_match: # user_points += 500 # else: # user_points -= 200 + bid_points # result_indicator = "🔴" # Wrong Prediction # else: # # Deduct 200 points for not submitting a prediction # user_points -= 200 # result_indicator = "⚪" # No Prediction # # Ensure user_points is never negative # user_points = max(user_points, 0) # # Update user's points in the DataFrame # users_df[user_name][0]['points'] = user_points # users[user_name][0]['points'] = user_points # # Maintain last 5 prediction results # if "last_5_results" not in users_df[user_name][0]: # users_df[user_name][0]["last_5_results"] = [] # users_df[user_name][0]["last_5_results"].insert(0, result_indicator) # Insert at beginning # users_df[user_name][0]["last_5_results"] = users_df[user_name][0]["last_5_results"][:5] # Keep only last 5 # if "last_5_results" not in users[user_name][0]: # users[user_name][0]["last_5_results"] = [] # users[user_name][0]["last_5_results"].insert(0, result_indicator) # Insert at beginning # users[user_name][0]["last_5_results"] = users[user_name][0]["last_5_results"][:5] # Keep only last 5 # users.to_json(USERS_JSON) # updated_dataset = Dataset.from_pandas(users_df) # updated_dataset.push_to_hub("Jay-Rajput/DIS_IPL_Leads", split="train") # outcomes.to_json(OUTCOMES) # outcomes.push_to_hub("Jay-Rajput/DIS_IPL_Outcomes", split="train") # Function to fetch matches for a given date def fetch_matches_by_date(matches, selected_date): return [match for match in matches if datetime.strptime(match['date'], '%Y-%m-%d').date() == selected_date] with st.sidebar: expander = st.expander("Admin Panel", expanded=False) admin_pass = expander.text_input("Enter admin passphrase:", type="password", key="admin_pass") if admin_pass == ADMIN_PASSPHRASE: expander.success("Authenticated") all_matches = load_data(MATCHES_JSON) match_outcomes = load_dataset("Jay-Rajput/DIS_IPL_Outcomes", split="train") submitted_match_ids = [outcome["match_id"] for outcome in match_outcomes] # Filter matches to those that do not have outcomes submitted yet matches_without_outcomes = [match for match in all_matches if match["match_id"] not in submitted_match_ids] # If matches are available, let the admin select one if matches_without_outcomes: # Optional: Allow the admin to filter matches by date selected_date = expander.date_input("Select Match Date", key="match_date") if selected_date: filtered_matches = fetch_matches_by_date(matches_without_outcomes, selected_date) else: filtered_matches = matches_without_outcomes if filtered_matches: match_selection = expander.selectbox("Select Match", filtered_matches, format_func=lambda match: f"{match['teams'][0]} vs {match['teams'][1]} (Match ID: {match['match_id']})", key="match_selection") selected_match_id = match_selection['match_id'] teams = match_selection['teams'] # Let admin select the winning team winning_team = expander.selectbox("Winning Team", teams, key="winning_team") # Fetch and display players for the selected winning team player_list = load_data(PLAYERS_JSON) if winning_team in player_list: players = player_list[winning_team] man_of_the_match = expander.selectbox("Man of the Match", players, key="man_of_the_match") else: players = [] man_of_the_match = expander.text_input("Man of the Match (Type if not listed)", key="man_of_the_match_fallback") # Add checkbox for outcome only submission outcome_only = expander.checkbox("Submit Outcome Only", key="outcome_only_checkbox") if expander.button("Submit Match Outcome", key="submit_outcome"): if outcome_only: # Submit match outcome without updating user scores update_leaderboard_and_outcomes(selected_match_id, winning_team, man_of_the_match, outcome_only=True) expander.success("Match outcome submitted!") else: # Submit match outcome and update user scores update_leaderboard_and_outcomes(selected_match_id, winning_team, man_of_the_match) expander.success("Match outcome submitted and leaderboard updated!") else: expander.write("No matches available for the selected date.") else: expander.write("No matches are available for today.") else: if admin_pass: # Show error only if something was typed expander.error("Not authenticated")