Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,242 Bytes
18faf97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
# ----------------------------------------------------------------------
# IMPORTS
# ----------------------------------------------------------------------
import spaces
# Simple GPU function to ensure Zero GPU detection
@spaces.GPU
def gpu_available():
import torch
return torch.cuda.is_available()
import os
import sys
import json
import time
import logging
import traceback
import subprocess
from datetime import datetime
from typing import List, Dict, Optional, Union
from contextlib import asynccontextmanager
import torch
import uvicorn
import threading
import requests
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import JSONResponse, HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
# ----------------------------------------------------------------------
# PATH SETUP
# ----------------------------------------------------------------------
script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, script_dir)
# ----------------------------------------------------------------------
# LOCAL IMPORTS
# ----------------------------------------------------------------------
from src.utils import (
ProcessingContext,
ProcessingResponse,
ProcessedImage,
setup_logging,
get_system_info,
cleanup_memory,
custom_dumps,
LOG_LEVEL_MAP,
EMOJI_MAP
)
from src.models.model_loader import (
ensure_models_loaded,
check_hardware_environment,
MODELS_LOADED,
LOAD_ERROR,
DEVICE
)
from src.pipeline import run_functions_in_sequence, PIPELINE_STEPS
# ----------------------------------------------------------------------
# CONFIGURATION
# ----------------------------------------------------------------------
from src.config import (
API_TITLE,
API_VERSION,
API_DESCRIPTION,
API_HOST,
API_PORT,
GPU_DURATION_LONG,
STATUS_SUCCESS,
STATUS_ERROR,
STATUS_PROCESSED,
STATUS_NOT_PROCESSED,
ERROR_NO_VALID_URLS,
HTTP_OK,
HTTP_BAD_REQUEST,
HTTP_INTERNAL_SERVER_ERROR
)
# ----------------------------------------------------------------------
# IMPORT TEST CONFIGURATION
# ----------------------------------------------------------------------
try:
from tests.config import RUN_TESTS
except ImportError:
try:
sys.path.insert(0, os.path.join(script_dir, 'tests'))
from config import RUN_TESTS
except ImportError:
RUN_TESTS = False
print("Warning: Could not import RUN_TESTS from tests.config, defaulting to False")
# ----------------------------------------------------------------------
# PYDANTIC MODELS
# ----------------------------------------------------------------------
class ImageRequest(BaseModel):
urls: Union[str, List[str]] = Field(..., description="Image URL(s)")
product_type: str = Field("General", description="Product type")
options: Optional[Dict] = Field(default_factory=dict, description="Processing options")
class ShopifyWebhook(BaseModel):
data: List = Field(..., description="Shopify webhook data")
class HealthResponse(BaseModel):
status: str
timestamp: float
device: str
models_loaded: bool
gpu_available: bool = False
system_info: Dict
# ----------------------------------------------------------------------
# LIFESPAN MANAGEMENT
# ----------------------------------------------------------------------
@asynccontextmanager
async def lifespan(app: FastAPI):
setup_logging()
logging.info(f"{EMOJI_MAP['INFO']} Starting {API_TITLE} v{API_VERSION}")
check_hardware_environment()
# Load models FIRST
try:
ensure_models_loaded()
if os.getenv("SPACE_ID"):
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU environment - models will be loaded on first request")
else:
if MODELS_LOADED:
logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded successfully")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Models not fully loaded")
# Run GPU initialization for Spaces
if os.getenv("SPACE_ID"):
try:
init_gpu()
logging.info(f"{EMOJI_MAP['SUCCESS']} GPU initialization completed")
except Exception as e:
error_msg = str(e)
if "GPU task aborted" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization aborted (Zero GPU not ready yet) - this is normal during startup")
logging.info("GPU will be initialized on first request")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization failed: {error_msg}")
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Failed to load models: {str(e)}")
# Now run tests after models are loaded
# Skip tests in Zero GPU if SKIP_STARTUP_TEST is set
skip_startup_test = os.getenv("SKIP_STARTUP_TEST", "false").lower() == "true"
if RUN_TESTS and os.environ.get("IN_PYTEST") != "true" and not skip_startup_test:
logging.info(f"{EMOJI_MAP['INFO']} Running tests at startup...")
# Run a simple test that calls the endpoint after server starts
def run_endpoint_test():
logging.info(f"{EMOJI_MAP['INFO']} Starting endpoint test with RUN_TESTS={RUN_TESTS}")
# Configuration for retries - increased for Zero GPU warming up
max_retries = 5
retry_delay = 60 # seconds - increased from 30
initial_delay = 45 # seconds - increased from 30
# Test payload
payload = {
"data": [
[{"url": "https://cdn.shopify.com/s/files/1/0505/0928/3527/files/hugging_face_test_image_shirt_product_type.jpg"}],
"Shirt"
]
}
# In Zero GPU environments, wait longer and handle GPU task abort gracefully
if os.getenv("SPACE_ID"):
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU environment detected - waiting {initial_delay}s for GPU to warm up...")
time.sleep(initial_delay) # Initial wait for Zero GPU environment to be ready
logging.info(f"{EMOJI_MAP['INFO']} Running full processing test with enhanced retry logic (max {max_retries} attempts)")
for retry in range(max_retries):
try:
logging.info(f"{EMOJI_MAP['INFO']} Testing /api/rb_and_crop endpoint (attempt {retry + 1}/{max_retries})...")
response = requests.post(
"http://localhost:7860/api/rb_and_crop",
json=payload,
timeout=180 # Longer timeout for Zero GPU
)
if response.status_code == 200:
data = response.json()
if "processed_images" in data and data["processed_images"]:
img = data["processed_images"][0]
img_status = img.get('status')
if img_status == STATUS_PROCESSED:
logging.info(f"{EMOJI_MAP['SUCCESS']} Test passed! Image status: {img_status}")
if img.get('base64_image'):
logging.info(f"{EMOJI_MAP['SUCCESS']} Image processed and base64 encoded successfully")
logging.info(f"{EMOJI_MAP['SUCCESS']} Full image processing test completed successfully")
break # Success, exit retry loop
elif img_status == STATUS_ERROR:
error_detail = img.get('error', 'Unknown error')
if "GPU task aborted" in error_detail or "GPU resources temporarily unavailable" in error_detail:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU task aborted during processing (attempt {retry + 1}/{max_retries})")
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU is warming up - this is expected during startup")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s for GPU to stabilize...")
time.sleep(retry_delay)
continue
else:
logging.error(f"{EMOJI_MAP['ERROR']} Processing error: {error_detail}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Unexpected image status: {img_status}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Test returned no images")
elif response.status_code == 503:
# GPU resources temporarily unavailable
logging.warning(f"{EMOJI_MAP['WARNING']} GPU resources unavailable (503), will retry...")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s for GPU to become available...")
time.sleep(retry_delay)
continue
elif response.status_code == 500:
# Check if it's a GPU abort error
try:
error_data = response.json()
error_detail = error_data.get('error', '')
if "GPU task aborted" in error_detail or "GPU resources temporarily unavailable" in error_detail:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU task aborted (500): {error_detail}")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU is still warming up. Waiting {retry_delay}s before retry...")
time.sleep(retry_delay)
continue
else:
logging.error(f"{EMOJI_MAP['ERROR']} Server error (500): {error_detail}")
except:
logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status 500: {response.text[:200]}")
else:
logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status {response.status_code}")
if response.text:
try:
error_data = response.json()
logging.error(f"Error details: {error_data.get('error', 'Unknown error')}")
except:
logging.error(f"Response: {response.text[:200]}")
except requests.exceptions.Timeout:
logging.warning(f"{EMOJI_MAP['WARNING']} Request timeout on attempt {retry + 1} - GPU might be initializing")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s before retry...")
time.sleep(retry_delay)
continue
except Exception as e:
error_msg = str(e)
if "GPU task aborted" in error_msg or "503" in error_msg or "Connection refused" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} Connection/GPU error on attempt {retry + 1}: {error_msg}")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Zero GPU warming up. Waiting {retry_delay}s before retry...")
time.sleep(retry_delay)
continue
else:
logging.error(f"{EMOJI_MAP['ERROR']} Test error: {error_msg}")
if retry < max_retries - 1:
logging.info(f"{EMOJI_MAP['INFO']} Will retry after {retry_delay}s...")
time.sleep(retry_delay)
continue
# Final health check only runs if we exhausted all retries without success
# The 'break' statement above ensures we only reach here if test failed
if retry == max_retries - 1:
logging.warning(f"{EMOJI_MAP['WARNING']} Full test failed after {max_retries} attempts")
logging.info(f"{EMOJI_MAP['INFO']} This is normal for Zero GPU during startup - the GPU needs time to warm up")
try:
response = requests.get("http://localhost:7860/health", timeout=10)
if response.status_code == 200:
data = response.json()
logging.info(f"{EMOJI_MAP['SUCCESS']} Health check passed - service is running and ready")
logging.info(f"Device: {data.get('device')}, Models loaded: {data.get('models_loaded')}")
logging.info(f"{EMOJI_MAP['INFO']} The GPU will be fully initialized on the first real request")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Health check returned status {response.status_code}")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} Health check failed: {str(e)}")
logging.info(f"{EMOJI_MAP['INFO']} Service is available and will handle requests normally once GPU warms up")
else:
# Non-Zero GPU environment - run full test after shorter delay
time.sleep(10) # Wait for server to fully start
try:
logging.info(f"{EMOJI_MAP['INFO']} Testing /api/rb_and_crop endpoint...")
# Normal timeout for non-Zero GPU environments
response = requests.post(
"http://localhost:7860/api/rb_and_crop",
json=payload,
timeout=120
)
if response.status_code == 200:
data = response.json()
if "processed_images" in data and data["processed_images"]:
img = data["processed_images"][0]
img_status = img.get('status')
if img_status == STATUS_PROCESSED:
logging.info(f"{EMOJI_MAP['SUCCESS']} Test passed! Image status: {img_status}")
if img.get('base64_image'):
logging.info(f"{EMOJI_MAP['SUCCESS']} Image processed and base64 encoded successfully")
elif img_status == STATUS_ERROR:
logging.error(f"{EMOJI_MAP['ERROR']} Processing error: {img.get('error', 'Unknown error')}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Unexpected image status: {img_status}")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} Test returned no images")
else:
logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status {response.status_code}")
if response.text:
try:
error_data = response.json()
logging.error(f"Error details: {error_data.get('error', 'Unknown error')}")
except:
logging.error(f"Response: {response.text[:200]}")
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Test error: {str(e)}")
# Run test in background thread
import threading
test_thread = threading.Thread(target=run_endpoint_test, daemon=True)
test_thread.start()
yield
logging.info(f"{EMOJI_MAP['INFO']} API shutdown initiated")
cleanup_memory()
# ----------------------------------------------------------------------
# FASTAPI APP
# ----------------------------------------------------------------------
app = FastAPI(
title=API_TITLE,
version=API_VERSION,
description=API_DESCRIPTION,
docs_url="/api/docs",
redoc_url="/api/redoc",
lifespan=lifespan
)
# ----------------------------------------------------------------------
# MIDDLEWARE
# ----------------------------------------------------------------------
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ----------------------------------------------------------------------
# GPU INITIALIZATION
# ----------------------------------------------------------------------
@spaces.GPU(duration=GPU_DURATION_LONG)
def init_gpu():
"""Initialize GPU for Spaces environment"""
try:
logging.info(f"{EMOJI_MAP['INFO']} Initializing GPU...")
if torch.cuda.is_available():
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception as e:
logging.warning(f"IPC collect failed, continuing anyway: {e}")
# Test GPU availability
test_tensor = torch.tensor([1.0]).cuda()
del test_tensor
logging.info(f"{EMOJI_MAP['SUCCESS']} GPU is available and working")
else:
logging.warning(f"{EMOJI_MAP['WARNING']} CUDA not available in GPU context")
return True
except Exception as e:
error_msg = str(e)
if "GPU task aborted" in error_msg:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization aborted - Zero GPU not ready")
else:
logging.error(f"{EMOJI_MAP['ERROR']} GPU initialization error: {error_msg}")
raise
# ----------------------------------------------------------------------
# HELPER FUNCTIONS
# ----------------------------------------------------------------------
def _process_images_impl(urls: Union[str, List[str]], product_type: str) -> Dict:
start_time = time.time()
if isinstance(urls, str):
url_list = [url.strip() for url in urls.split(",") if url.strip()]
else:
url_list = urls
if not url_list:
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail=ERROR_NO_VALID_URLS)
# Import build_keywords function to generate keywords based on product type
from src.processing.bounding_box.bounding_box import build_keywords
# Generate keywords for this product type
keywords = build_keywords(product_type)
contexts = [ProcessingContext(url=url, product_type=product_type, keywords=keywords) for url in url_list]
batch_logs = []
try:
ensure_models_loaded()
run_functions_in_sequence(contexts, PIPELINE_STEPS)
processed_images = []
for ctx in contexts:
if hasattr(ctx, 'error') and ctx.error:
processed_images.append({
"url": ctx.url,
"status": STATUS_ERROR,
"error": str(ctx.error)
})
elif hasattr(ctx, 'skip_processing') and ctx.skip_processing:
# Check if there's a specific error message
error_msg = "Processing skipped"
if hasattr(ctx, 'processing_error'):
error_msg = str(ctx.processing_error)
processed_images.append({
"url": ctx.url,
"status": STATUS_ERROR,
"error": error_msg
})
elif hasattr(ctx, 'result_image') and ctx.result_image:
processed_images.append({
"url": ctx.url,
"status": STATUS_PROCESSED,
"base64_image": ctx.result_image,
"metadata": ctx.metadata,
"processing_logs": ctx.processing_logs
})
else:
processed_images.append({
"url": ctx.url,
"status": STATUS_NOT_PROCESSED
})
total_time = time.time() - start_time
return {
"status": "success",
"processed_images": processed_images,
"total_time": total_time,
"batch_logs": batch_logs,
"system_info": get_system_info()
}
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Processing failed: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@spaces.GPU(duration=GPU_DURATION_LONG)
def process_images_gpu(urls: Union[str, List[str]], product_type: str) -> Dict:
"""GPU-accelerated image processing for Spaces"""
try:
# Force model loading in GPU context for Zero GPU environment
if not MODELS_LOADED:
logging.info(f"{EMOJI_MAP['INFO']} Loading models in GPU context...")
from src.models.model_loader import load_models
try:
load_models()
logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded in GPU context")
except Exception as e:
logging.error(f"{EMOJI_MAP['ERROR']} Failed to load models in GPU context: {str(e)}")
# Continue anyway - some steps might work without all models
# Move models to GPU within the GPU context
logging.info(f"{EMOJI_MAP['INFO']} Moving models to GPU...")
from src.models.model_loader import move_models_to_gpu
try:
move_models_to_gpu()
logging.info(f"{EMOJI_MAP['SUCCESS']} Models moved to GPU")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} Failed to move some models to GPU: {str(e)}")
# Continue anyway - will run on CPU but slower
return _process_images_impl(urls, product_type)
except Exception as e:
error_msg = str(e)
if "GPU task aborted" in error_msg:
logging.error(f"{EMOJI_MAP['ERROR']} GPU task was aborted - Zero GPU might be overloaded or warming up")
logging.info(f"{EMOJI_MAP['INFO']} This often happens during startup - the GPU will be ready soon")
raise HTTPException(
status_code=503,
detail="GPU resources temporarily unavailable. Zero GPU is warming up. Please try again in 30-60 seconds."
)
else:
raise
def process_images(urls: Union[str, List[str]], product_type: str) -> Dict:
"""Process images with automatic GPU/CPU selection"""
if os.getenv("SPACE_ID"):
return process_images_gpu(urls, product_type)
else:
return _process_images_impl(urls, product_type)
# ----------------------------------------------------------------------
# ENDPOINTS
# ----------------------------------------------------------------------
@app.get("/", response_class=HTMLResponse)
async def root():
return f"""
<html>
<head>
<title>{API_TITLE}</title>
</head>
<body>
<h1>{API_TITLE} v{API_VERSION}</h1>
<p>Visit <a href="/api/docs">/api/docs</a> for API documentation</p>
</body>
</html>
"""
@app.get("/health", response_model=HealthResponse)
async def health():
# Check GPU availability
gpu_available = False
gpu_name = None
try:
if torch.cuda.is_available():
gpu_available = True
gpu_name = torch.cuda.get_device_name(0)
except:
pass
system_info = get_system_info()
system_info["gpu_available"] = gpu_available
system_info["gpu_name"] = gpu_name
system_info["space_id"] = os.getenv("SPACE_ID", None)
system_info["zero_gpu"] = bool(os.getenv("SPACE_ID"))
return HealthResponse(
status="healthy",
timestamp=time.time(),
device=DEVICE,
models_loaded=MODELS_LOADED,
gpu_available=gpu_available,
system_info=system_info
)
@app.post("/api/wake")
async def wake_up():
"""Lightweight endpoint for waking up the space"""
logging.info(f"{EMOJI_MAP['INFO']} Wake-up request received")
# Try to initialize GPU if in Zero GPU environment
if os.getenv("SPACE_ID"):
try:
# This will trigger GPU allocation in Zero GPU spaces
init_gpu()
logging.info(f"{EMOJI_MAP['SUCCESS']} GPU initialized for wake-up")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization during wake-up: {str(e)}")
# Ensure models are loaded
try:
ensure_models_loaded()
logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded during wake-up")
except Exception as e:
logging.warning(f"{EMOJI_MAP['WARNING']} Model loading during wake-up: {str(e)}")
return {
"status": "awake",
"timestamp": time.time(),
"device": DEVICE,
"models_loaded": MODELS_LOADED,
"message": "Service is awake and ready"
}
@app.get("/api/quota-info")
async def quota_info():
"""Provide information about GPU quota (informational only - actual quota is managed by HF)"""
return {
"status": "info",
"quota_management": "Hugging Face ZeroGPU Infrastructure",
"quota_details": {
"total_seconds": 300,
"refill_rate": "1 GPU second per 30 real seconds",
"half_life": "2 hours",
"full_recovery_time": "2.5 hours (9000 seconds)"
},
"recovery_suggestions": {
"light_usage": {
"gpu_seconds": 30,
"wait_minutes": 15,
"suitable_for": "1-2 images"
},
"moderate_usage": {
"gpu_seconds": 60,
"wait_minutes": 30,
"suitable_for": "2-4 images"
},
"heavy_usage": {
"gpu_seconds": 120,
"wait_minutes": 60,
"suitable_for": "4-8 images"
},
"full_quota": {
"gpu_seconds": 300,
"wait_minutes": 150,
"suitable_for": "10+ images"
}
},
"note": "This endpoint provides information only. Actual quota tracking is done by Hugging Face infrastructure.",
"timestamp": time.time()
}
@app.post("/api/predict", response_model=ProcessingResponse)
async def predict(request: ImageRequest):
result = process_images(request.urls, request.product_type)
return ProcessingResponse(
status=result["status"],
results=[
ProcessedImage(
image_url=img["url"],
status=img["status"],
base64=img.get("base64_image", ""),
format="png",
type="processed",
metadata=img.get("metadata", {}),
error=img.get("error")
)
for img in result["processed_images"]
],
processed_count=len([img for img in result["processed_images"] if img["status"] == STATUS_PROCESSED]),
total_time=result["total_time"],
system_info=result["system_info"]
)
@app.post("/api/rb_and_crop")
async def shopify_webhook(webhook: ShopifyWebhook):
if not webhook.data or len(webhook.data) < 2:
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail="Invalid webhook data")
images_info = webhook.data[0]
product_type = webhook.data[1] if len(webhook.data) > 1 else "General"
if not isinstance(images_info, list):
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail="Invalid images data")
urls = []
for img_dict in images_info:
if isinstance(img_dict, dict) and "url" in img_dict:
urls.append(img_dict["url"])
if not urls:
raise HTTPException(status_code=HTTP_BAD_REQUEST, detail=ERROR_NO_VALID_URLS)
# Special handling for wake-up requests (single placeholder image with "Test" product type)
if len(urls) == 1 and product_type == "Test" and "placeholder.com" in urls[0]:
logging.info(f"{EMOJI_MAP['INFO']} Wake-up request detected, returning minimal response")
return {
"status": STATUS_SUCCESS,
"processed_images": [{
"url": urls[0],
"status": STATUS_PROCESSED,
"base64_image": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChwGA60e6kgAAAABJRU5ErkJggg==", # 1x1 transparent PNG
"color": "#ffffff",
"image_type": "wake_up",
"artifacts": "false"
}]
}
result = process_images(urls, product_type)
return {
"status": result["status"],
"processed_images": [
{
"url": img["url"],
"status": img["status"],
"base64_image": img.get("base64_image", ""),
"color": "#ffffff",
"image_type": "remove_background",
"artifacts": "false"
}
for img in result["processed_images"]
]
}
@app.post("/api/batch")
async def batch_process(requests: List[ImageRequest]):
results = []
for req in requests:
try:
result = process_images(req.urls, req.product_type)
results.append(result)
except Exception as e:
results.append({
"status": "error",
"error": str(e),
"urls": req.urls
})
return {
"status": "success",
"batch_results": results,
"total_requests": len(requests)
}
# ----------------------------------------------------------------------
# ERROR HANDLERS
# ----------------------------------------------------------------------
@app.exception_handler(HTTPException)
async def http_exception_handler(request: Request, exc: HTTPException):
return JSONResponse(
status_code=exc.status_code,
content={
"status": "error",
"error": exc.detail,
"timestamp": time.time()
}
)
@app.exception_handler(Exception)
async def general_exception_handler(request: Request, exc: Exception):
# Determine error type and prepare detailed response
error_type = "UNKNOWN_ERROR"
error_message = str(exc)
error_details = {}
# Check for specific error types
if ("GPU" in error_message and ("limit" in error_message or "quota" in error_message)) or "ZeroGPU quota exceeded" in error_message:
# For GPU quota errors, log a simple notification without traceback
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded: Space app has reached its GPU limit")
error_type = "GPU_LIMIT_ERROR"
error_details["gpu_error"] = True
# Provide quota recovery information
error_details["quota_info"] = {
"message": "GPU quota exceeded. ZeroGPU quota refills at 1 GPU second per 30 real seconds.",
"recommended_wait_times": {
"minimal": 900, # 15 minutes for ~30s GPU quota
"moderate": 1800, # 30 minutes for ~60s GPU quota
"full": 5400 # 90 minutes for ~180s GPU quota
},
"note": "Quota is managed by Hugging Face infrastructure, not this application."
}
error_details["retry_after"] = 900 # Suggest 15 minutes minimum
elif "GPU task aborted" in error_message:
logging.error(f"{EMOJI_MAP['ERROR']} GPU task aborted")
error_type = "GPU_TASK_ABORTED"
error_details["gpu_error"] = True
elif "gradio.exceptions.Error" in str(type(exc)):
error_type = "GRADIO_ERROR"
error_details["gradio_error"] = True
# For Gradio errors related to GPU limits, don't log traceback
if "GPU limit" in error_message:
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded: Space app has reached its GPU limit")
else:
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
elif isinstance(exc, ValueError):
error_type = "VALIDATION_ERROR"
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
elif isinstance(exc, TimeoutError):
error_type = "TIMEOUT_ERROR"
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
else:
# For other errors, log with traceback
logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}")
logging.error(traceback.format_exc())
# Prepare response with detailed error information
error_response = {
"status": "error",
"error_type": error_type,
"error_message": error_message,
"error_details": error_details,
"timestamp": time.time(),
"request_path": str(request.url.path),
"request_method": request.method
}
# Only include traceback for non-GPU quota errors
if error_type not in ["GPU_LIMIT_ERROR", "GPU_TASK_ABORTED"] and not ("GPU limit" in error_message) and not ("ZeroGPU quota exceeded" in error_message):
tb_lines = traceback.format_exception(type(exc), exc, exc.__traceback__)
error_response["traceback"] = ''.join(tb_lines)
# For GPU quota errors, log a simple summary instead of full response
if error_type == "GPU_LIMIT_ERROR":
logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota limit response sent to client with retry_after: {error_details.get('retry_after', 900)}s")
else:
# Log the full error details for other errors
logging.error(f"{EMOJI_MAP['ERROR']} Error response: {json.dumps(error_response, indent=2)}")
return JSONResponse(
status_code=500,
content=error_response
)
# ----------------------------------------------------------------------
# MAIN
# ----------------------------------------------------------------------
if __name__ == "__main__":
# Configure uvicorn logging to avoid duplicates
log_config = uvicorn.config.LOGGING_CONFIG
log_config["formatters"]["default"]["fmt"] = "%(asctime)s [%(levelname)s] %(name)s: %(message)s"
log_config["formatters"]["access"]["fmt"] = '%(asctime)s [%(levelname)s] %(name)s: %(client_addr)s - "%(request_line)s" %(status_code)s'
# Disable duplicate logging from uvicorn
log_config["loggers"]["uvicorn"]["propagate"] = False
log_config["loggers"]["uvicorn.access"]["propagate"] = False
uvicorn.run(
app,
host=API_HOST,
port=API_PORT,
log_level="info",
log_config=log_config
)
|