File size: 47,214 Bytes
18faf97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
# ----------------------------------------------------------------------
# IMPORTS
# ----------------------------------------------------------------------
import io
import os
import time
import numpy as np
import torch
import cv2
import logging
import sys
import traceback
from PIL import Image, ImageOps, ImageEnhance
from torchvision import transforms
from scipy.ndimage import label as scipy_label, find_objects as scipy_find_objects
from typing import List
from src.utils import ProcessingContext, create_pipeline_step, LOG_LEVEL_MAP, EMOJI_MAP

# ----------------------------------------------------------------------
# GLOBAL CONSTANTS
# ----------------------------------------------------------------------
RBC_CONTRAST_FACTOR = 1.25
RBC_SHARPNESS_FACTOR = 1.15
PAD_COLOR = "#ffffff"
THRESH = 0.42
RESCUE_THRESH = 0.20
MAX_IMAGES_PER_BATCH = 4
MORPH_KERNEL_SIZE = (3, 3)
MORPH_CLOSE_ITER = 1
MORPH_OPEN_ITER = 1
EROSION_ITER = 1
GAUSSIAN_KERNEL_SIZE = (7, 7)
DO_GUIDED_FILTER = True
FILL_HOLES = False
USE_BILATERAL = True
CALIBRATION_VERSION = "v16_balanced"

BLUE_BACKGROUND_HSV_LOWER = np.array([100, 100, 80])
BLUE_BACKGROUND_HSV_UPPER = np.array([130, 255, 255])
BLUE_BACKGROUND_THRESHOLD = 0.25

SKIN_HSV_LOWER_1 = np.array([0, 20, 70])
SKIN_HSV_UPPER_1 = np.array([30, 180, 255])
SKIN_HSV_LOWER_2 = np.array([0, 10, 40])
SKIN_HSV_UPPER_2 = np.array([25, 150, 200])
SKIN_THRESHOLD = 0.10

DENIM_HSV_LOWER_1 = np.array([80, 30, 30])
DENIM_HSV_UPPER_1 = np.array([130, 220, 230])
DENIM_HSV_LOWER_2 = np.array([85, 15, 100])
DENIM_HSV_UPPER_2 = np.array([115, 130, 230])
DENIM_THRESHOLD = 0.12

OUTDOOR_GREEN_HSV_LOWER = np.array([35, 40, 40])
OUTDOOR_GREEN_HSV_UPPER = np.array([85, 255, 255])
OUTDOOR_SKY_HSV_LOWER = np.array([90, 40, 150])
OUTDOOR_SKY_HSV_UPPER = np.array([130, 120, 255])
OUTDOOR_THRESHOLD = 0.15

DIFFICULTY_CONTRAST_THRESHOLD = 50
DIFFICULTY_EDGE_THRESHOLD = 0.05
EDGE_ENHANCE_WEIGHT_ORIG = 0.7
EDGE_ENHANCE_WEIGHT_SHARP = 0.3

GUIDED_FILTER_RADIUS = 4
GUIDED_FILTER_EPSILON = 0.01
BILATERAL_FILTER_D = 9
BILATERAL_FILTER_SIGMA_COLOR = 75
BILATERAL_FILTER_SIGMA_SPACE = 75

CANNY_THRESHOLD_LOW = 100
CANNY_THRESHOLD_HIGH = 200

TARGET_SIZE_SCALING_FACTOR = 0.98
ASPECT_RATIO_THRESHOLD = 4/3
PADDING_SCALE_FACTOR = 0.98

OUTDOOR_CONTRAST_MULTIPLIER = 1.1
PERSON_CONTRAST_MULTIPLIER = 0.75

LOW_LOAD_SURFACE_THRESHOLD = 12_000_000
MEDIUM_LOAD_SURFACE_THRESHOLD = 25_000_000
HIGH_LOAD_SURFACE_THRESHOLD = 45_000_000

# ----------------------------------------------------------------------
# DYNAMIC SIZING CONFIGURATION
# ----------------------------------------------------------------------
SIZE_CONFIGS = {
    "small": {
        "final_side": 1024,
        "rbc_scales": [1.25, 1.0]
    },
    "medium": {
        "final_side": 1536,
        "rbc_scales": [1.0, 0.75]
    },
    "large": {
        "final_side": 2048,
        "rbc_scales": [1.0]
    }
}

ADAPTIVE_SCALE_CONFIGS = {
    "small_fast": {"final_side": 1024, "rbc_scales": [1.0]},
    "small_minimal": {"final_side": 1024, "rbc_scales": [1.0]},
    "medium_fast": {"final_side": 1536, "rbc_scales": [1.0]},
    "medium_minimal": {"final_side": 1536, "rbc_scales": [1.0]},
    "large_fast": {"final_side": 2048, "rbc_scales": [1.0]},
    "large_minimal": {"final_side": 2048, "rbc_scales": [1.0]}
}

SIZE_CONFIG_SCALE = [1024, 1536]

# ----------------------------------------------------------------------
# PRE-COMPUTED OBJECTS
# ----------------------------------------------------------------------
morph_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, MORPH_KERNEL_SIZE)
rmbg_trans = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
edge_enhance_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])

# GPU-accelerated normalization if available
try:
    import torchvision.transforms.v2 as v2_transforms
    USE_V2_TRANSFORMS = True
except ImportError:
    USE_V2_TRANSFORMS = False

# ----------------------------------------------------------------------
# UTILS
# ----------------------------------------------------------------------
def label(mask):
    return scipy_label(mask)

def find_objects(lbl):
    return scipy_find_objects(lbl)

def guided_filter(I, p, r, eps):
    mean_I = cv2.boxFilter(I, cv2.CV_64F, (r, r))
    mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
    mean_Ip = cv2.boxFilter(I * p, cv2.CV_64F, (r, r))
    cov_Ip = mean_Ip - mean_I * mean_p
    mean_II = cv2.boxFilter(I * I, cv2.CV_64F, (r, r))
    var_I = mean_II - mean_I * mean_I
    a = cov_Ip / (var_I + eps)
    b = mean_p - a * mean_I
    mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
    mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
    return mean_a * I + mean_b

def detect_blue_background(hsv):
    blue_mask = cv2.inRange(hsv, BLUE_BACKGROUND_HSV_LOWER, BLUE_BACKGROUND_HSV_UPPER)
    return float(np.mean(blue_mask > 0)) > BLUE_BACKGROUND_THRESHOLD

def detect_skin_tones(hsv):
    m1 = cv2.inRange(hsv, SKIN_HSV_LOWER_1, SKIN_HSV_UPPER_1)
    m2 = cv2.inRange(hsv, SKIN_HSV_LOWER_2, SKIN_HSV_UPPER_2)
    return float(np.mean(cv2.bitwise_or(m1, m2) > 0)) > SKIN_THRESHOLD

def detect_denim(hsv):
    m1 = cv2.inRange(hsv, DENIM_HSV_LOWER_1, DENIM_HSV_UPPER_1)
    m2 = cv2.inRange(hsv, DENIM_HSV_LOWER_2, DENIM_HSV_UPPER_2)
    return float(np.mean(cv2.bitwise_or(m1, m2) > 0)) > DENIM_THRESHOLD

def detect_outdoor_scene(hsv):
    g = cv2.inRange(hsv, OUTDOOR_GREEN_HSV_LOWER, OUTDOOR_GREEN_HSV_UPPER)
    s = cv2.inRange(hsv, OUTDOOR_SKY_HSV_LOWER, OUTDOOR_SKY_HSV_UPPER)
    return float(np.mean(cv2.bitwise_or(g, s) > 0)) > OUTDOOR_THRESHOLD

def analyze_image_difficulty(gray):
    hist = cv2.calcHist([gray], [0], None, [256], [0, 256]).flatten()
    hist /= hist.sum()
    contrast = float(np.std(hist * np.arange(256)))
    edge_ratio = float(np.mean(cv2.Canny(gray, CANNY_THRESHOLD_LOW, CANNY_THRESHOLD_HIGH) > 0))
    return bool(contrast < DIFFICULTY_CONTRAST_THRESHOLD and edge_ratio < DIFFICULTY_EDGE_THRESHOLD), contrast, edge_ratio

def enhance_edges(img_rgb):
    sharp = cv2.filter2D(img_rgb, -1, edge_enhance_kernel)
    return cv2.addWeighted(img_rgb, EDGE_ENHANCE_WEIGHT_ORIG, sharp, EDGE_ENHANCE_WEIGHT_SHARP, 0)

def smooth_mask(mask):
    if DO_GUIDED_FILTER:
        f = guided_filter(mask.astype(np.float64) / 255.0,
                          mask.astype(np.float64) / 255.0, GUIDED_FILTER_RADIUS, GUIDED_FILTER_EPSILON)
        mask = (f * 255).clip(0, 255).astype(np.uint8)
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, morph_kernel, iterations=MORPH_CLOSE_ITER)
    if MORPH_OPEN_ITER:
        mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, morph_kernel, iterations=MORPH_OPEN_ITER)
    if EROSION_ITER:
        mask = cv2.erode(mask, morph_kernel, iterations=EROSION_ITER)
    if FILL_HOLES:
        contours, _ = cv2.findContours(mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
        for cnt in contours:
            cv2.drawContours(mask, [cnt], -1, 255, thickness=cv2.FILLED)
    if USE_BILATERAL:
        mask = cv2.bilateralFilter(mask, BILATERAL_FILTER_D, BILATERAL_FILTER_SIGMA_COLOR, BILATERAL_FILTER_SIGMA_SPACE)
    return cv2.GaussianBlur(mask, GAUSSIAN_KERNEL_SIZE, 0)

def calculate_total_surface_area(contexts):
    total_surface = 0
    for ctx in contexts:
        if ctx.skip_run or ctx.skip_processing or not hasattr(ctx, '_download_content'):
            continue
        try:
            img = Image.open(io.BytesIO(ctx._download_content))
            w, h = img.size
            total_surface += w * h
        except:
            continue
    return total_surface

def determine_adaptive_size_config(width, height, total_surface_area):
    max_dim = max(width, height)
    
    if max_dim < SIZE_CONFIG_SCALE[0]:
        base_config = "small"
    elif SIZE_CONFIG_SCALE[0] <= max_dim <= SIZE_CONFIG_SCALE[1]:
        base_config = "medium"
    else:
        base_config = "large"
    
    if total_surface_area >= HIGH_LOAD_SURFACE_THRESHOLD:
        config_key = f"{base_config}_minimal"
    elif total_surface_area >= MEDIUM_LOAD_SURFACE_THRESHOLD:
        config_key = f"{base_config}_fast"
    else:
        config_key = base_config
    
    if config_key in ADAPTIVE_SCALE_CONFIGS:
        return config_key, ADAPTIVE_SCALE_CONFIGS[config_key]
    else:
        return base_config, SIZE_CONFIGS[base_config]

def determine_size_config(width, height):
    max_dim = max(width, height)
    
    if max_dim < SIZE_CONFIG_SCALE[0]:
        return "small", SIZE_CONFIGS["small"]
    elif SIZE_CONFIG_SCALE[0] <= max_dim <= SIZE_CONFIG_SCALE[1]:
        return "medium", SIZE_CONFIGS["medium"]
    else:
        return "large", SIZE_CONFIGS["large"]

def calculate_optimal_scale(original_width, original_height, target_side):
    max_original = max(original_width, original_height)
    
    if max_original <= target_side:
        return 1.0
    
    return (target_side * TARGET_SIZE_SCALING_FACTOR) / max_original

def final_pad_sq(im):
    w, h = im.size
    if w / h > ASPECT_RATIO_THRESHOLD:
        side = int(round(h * PADDING_SCALE_FACTOR))
        l = (w - side) // 2
        return im.crop((l, (h - side) // 2, l + side, (h + side) // 2))
    side = max(w, h)
    new_im = Image.new("RGBA", (side, side), (0, 0, 0, 0))
    new_im.paste(im, ((side - w) // 2, (side - h) // 2))
    return new_im

# ----------------------------------------------------------------------
# CORE IMPLEMENTATION
# ----------------------------------------------------------------------
def preprocess_images_batch(contexts, batch_logs):
    function_name = "preprocess_images_batch"
    processed_count = 0
    skipped_count = 0
    error_count = 0
    total_surface_area = 0
    
    t0 = time.perf_counter()
    for ctx in contexts:
        log_item = {
            "image_url": ctx.url,
            "function": function_name, 
            "data": {}
        }
        
        if ctx.skip_run or ctx.skip_processing:
            log_item["status"] = "skipped"
            log_item["data"]["reason"] = "marked_for_skip_or_no_downloaded_image"
            batch_logs.append(log_item)
            skipped_count += 1
            continue
            
        if not hasattr(ctx, '_download_content'):
            log_item["status"] = "error"
            log_item["exception"] = "No downloaded content found"
            log_item["data"]["reason"] = "missing_download_content"
            batch_logs.append(log_item)
            ctx.skip_run = True
            error_count += 1
            continue
            
        try:
            process_start = time.perf_counter()
            
            img = Image.open(io.BytesIO(ctx._download_content))
            img = ImageOps.exif_transpose(img).convert("RGB")
            
            ow, oh = img.size
            ctx._orig_size = (ow, oh)
            total_surface_area += ow * oh
            
            size_config_name, size_config = determine_size_config(ow, oh)
            final_side = size_config["final_side"]
            rbc_scales = size_config["rbc_scales"]
            
            scale = calculate_optimal_scale(ow, oh, final_side)
            
            if scale < 1:
                img = img.resize((int(ow * scale), int(oh * scale)), Image.Resampling.LANCZOS)
                ow, oh = img.size
                
            pad = Image.new("RGB", (final_side, final_side), PAD_COLOR)
            pad.paste(img, ((final_side - ow) // 2, (final_side - oh) // 2))
            
            hsv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2HSV)
            gray = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2GRAY)
            
            has_blue = detect_blue_background(hsv)
            has_person = detect_skin_tones(hsv)
            has_denim = detect_denim(hsv)
            is_outdoor = detect_outdoor_scene(hsv)
            is_diff, contrast, edge_ratio = analyze_image_difficulty(gray)
            
            contrast_multiplier = 1.0
            if is_outdoor:
                contrast_multiplier = OUTDOOR_CONTRAST_MULTIPLIER
            elif has_person:
                contrast_multiplier = PERSON_CONTRAST_MULTIPLIER
                
            enhanced = ImageEnhance.Contrast(pad).enhance(RBC_CONTRAST_FACTOR * contrast_multiplier)
            enhanced = ImageEnhance.Sharpness(enhanced).enhance(RBC_SHARPNESS_FACTOR)
            edge_enh = Image.fromarray(enhance_edges(np.array(pad)))
            
            final_enhanced = edge_enh if is_diff else enhanced
            
            ctx._rmbg_meta = {
                "pad": pad,
                "enhanced": final_enhanced,
                "flags": (has_blue, has_person, has_denim, is_outdoor, is_diff),
                "size_config": size_config_name,
                "final_side": final_side,
                "rbc_scales": rbc_scales
            }
            
            process_time = time.perf_counter() - process_start
            
            log_item["status"] = "ok"
            log_item["data"].update({
                "orig_size": ctx._orig_size,
                "processed_size": (final_side, final_side),
                "size_config": size_config_name,
                "scale_applied": round(scale, 4),
                "contrast": contrast,
                "edge_ratio": edge_ratio,
                "processing_time": round(process_time, 4),
                "rbc_scales": rbc_scales,
                "flags": {
                    "has_blue": has_blue,
                    "has_person": has_person,
                    "has_denim": has_denim,
                    "is_outdoor": is_outdoor,
                    "is_difficult": is_diff
                }
            })
            processed_count += 1
            
            del ctx._download_content
            
        except Exception as e:
            log_item["status"] = "error"
            log_item["exception"] = str(e)
            log_item["data"]["processing_time"] = round(time.perf_counter() - process_start, 4) if 'process_start' in locals() else 0
            ctx.skip_run = True
            error_count += 1
            
        batch_logs.append(log_item)
    
    for ctx in contexts:
        if hasattr(ctx, '_rmbg_meta'):
            size_config_name, size_config = determine_adaptive_size_config(
                ctx._orig_size[0], ctx._orig_size[1], total_surface_area
            )
            ctx._rmbg_meta["size_config"] = size_config_name
            ctx._rmbg_meta["rbc_scales"] = size_config["rbc_scales"]
    
    preprocess_summary = {
        "function": "preprocess_summary",
        "status": "info",
        "data": {
            "total_time": round(time.perf_counter() - t0, 4),
            "processed_count": processed_count,
            "skipped_count": skipped_count,
            "error_count": error_count,
            "total_surface_area": total_surface_area,
            "surface_area_mb": round(total_surface_area / 1_000_000, 2),
            "success_rate": f"{processed_count/(processed_count+error_count):.2%}" if (processed_count + error_count) > 0 else "N/A"
        }
    }
    batch_logs.append(preprocess_summary)
    
    return batch_logs

def process_background_removal(contexts, batch_logs):
    import app
    import contextlib
    
    function_name = "process_background_removal"
    
    from src.models import model_loader
    
    RMBG_MODEL = model_loader.RMBG_MODEL
    DEVICE = model_loader.DEVICE
    MODELS_LOADED = model_loader.MODELS_LOADED
    LOAD_ERROR = model_loader.LOAD_ERROR
    RMBG_FULL_PRECISION = model_loader.RMBG_FULL_PRECISION
    ENABLE_CUDA_GRAPHS = model_loader.ENABLE_CUDA_GRAPHS
    
    logging.info(f"Checking model state in {function_name}:")
    logging.info(f"  MODELS_LOADED: {MODELS_LOADED}")
    logging.info(f"  RMBG_MODEL is None: {RMBG_MODEL is None}")
    logging.info(f"  DEVICE: {DEVICE}")
    
    cuda_graph_cache = {}
    stream = None
    if DEVICE == "cuda" and torch.cuda.is_available():
        try:
            stream = torch.cuda.Stream()
        except RuntimeError:
            stream = None
    
    torch.set_float32_matmul_precision('high')
    
    if DEVICE == "cuda" and torch.cuda.is_available():
        try:
            torch.backends.cuda.matmul.allow_tf32 = True
            torch.backends.cudnn.allow_tf32 = True
            torch.backends.cudnn.benchmark = True
            torch.backends.cudnn.deterministic = False
            torch.backends.cudnn.enabled = True
            
            if hasattr(torch.backends.cuda, 'enable_math_sdp'):
                torch.backends.cuda.enable_math_sdp(True)
            if hasattr(torch.backends.cuda, 'enable_flash_sdp'):
                torch.backends.cuda.enable_flash_sdp(True)
            if hasattr(torch.backends.cuda, 'enable_mem_efficient_sdp'):
                torch.backends.cuda.enable_mem_efficient_sdp(True)
                
            if hasattr(torch.backends.cudnn, 'preferred_backend'):
                torch.backends.cudnn.preferred_backend = 'cudnn'
        except (RuntimeError, AttributeError) as e:
            logging.debug(f"Some CUDA optimizations not available: {e}")
    
    if not MODELS_LOADED and not os.getenv("SPACE_ID"):
        error_msg = LOAD_ERROR or "Models not loaded"
        error_trace = traceback.format_exc()
        
        logging.error(f"CRITICAL: Model not loaded in {function_name}: {error_msg}")
        logging.error(f"Traceback:\n{error_trace}")
        
        for ctx in contexts:
            ctx.skip_run = True
            ctx.error = error_msg
            ctx.error_traceback = error_trace
            
        batch_logs.append({
            "function": function_name,
            "status": "critical_error",
            "exception": error_msg,
            "traceback": error_trace
        })
        
        logging.critical("Terminating due to model loading failure")
        sys.exit(1)
    
    if RMBG_MODEL is None:
        logging.warning("RMBG model not available - skipping background removal")
        
        for ctx in contexts:
            if hasattr(ctx, '_download_content') and not ctx.skip_run:
                img = Image.open(io.BytesIO(ctx._download_content))
                img = ImageOps.exif_transpose(img).convert("RGB")
                
                ctx.pil_img["original"] = img
                ctx.pil_img["rmbg"] = img
                ctx.pil_img["rmbg_size"] = img.size
                ctx.color_flags["rmbg"] = "#ffffff"
        
        batch_logs.append({
            "function": function_name,
            "status": "skipped",
            "data": {
                "reason": "rmbg_model_not_available",
                "message": "Background removal skipped - RMBG model not loaded"
            }
        })
        
        return batch_logs
    
    valid_contexts = []
    valid_metas = []
    
    for ctx in contexts:
        if ctx.skip_run or ctx.skip_processing or not hasattr(ctx, '_rmbg_meta'):
            continue
        valid_contexts.append(ctx)
        valid_metas.append(ctx._rmbg_meta)
    
    if not valid_contexts:
        batch_logs.append({
            "function": function_name,
            "status": "error",
            "data": {
                "batch_size": 0,
                "device": DEVICE,
                "reason": "no_valid_contexts"
            }
        })
        return batch_logs
    
    model_device = next(RMBG_MODEL.parameters()).device if RMBG_MODEL else torch.device(DEVICE)
    model_dtype = torch.float16 if not RMBG_FULL_PRECISION and DEVICE == "cuda" else torch.float32
    
    total_pixels = sum(m['final_side'] ** 2 for m in valid_metas)
    total_megapixels = total_pixels / (1024 * 1024)
    
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"{EMOJI_MAP['INFO']} Model Configuration:")
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"  - Device: {model_device} | Dtype: {model_dtype}")
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"  - Matmul precision: high | TF32: {torch.backends.cuda.matmul.allow_tf32 if DEVICE == 'cuda' and torch.cuda.is_available() else 'N/A'}")
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"  - Total images: {len(valid_contexts)} | Total megapixels: {total_megapixels:.2f} MP")
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"  - Model compiled: {hasattr(RMBG_MODEL, '_dynamo_orig_callable') or hasattr(RMBG_MODEL, 'graph')}")
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"  - CUDA available: {torch.cuda.is_available()} | Current device: {torch.cuda.current_device() if torch.cuda.is_available() else 'N/A'}")
    
    RMBG_MODEL.eval()
    
    if not RMBG_FULL_PRECISION and DEVICE == "cuda":
        RMBG_MODEL = RMBG_MODEL.half()
        logging.log(LOG_LEVEL_MAP["INFO"], f"{EMOJI_MAP['INFO']} Model converted to FP16 for faster inference")
    
    if DEVICE == "cuda":
        try:
            RMBG_MODEL = RMBG_MODEL.to(memory_format=torch.channels_last)
            logging.log(LOG_LEVEL_MAP["INFO"], f"{EMOJI_MAP['INFO']} Model converted to channels_last memory format")
        except Exception as e:
            logging.debug(f"Could not convert to channels_last: {e}")
    
    size_groups = {}
    for ctx, meta in zip(valid_contexts, valid_metas):
        size_key = f"{meta['final_side']}x{meta['final_side']}"
        if size_key not in size_groups:
            size_groups[size_key] = []
        size_groups[size_key].append((ctx, meta))
    
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"{EMOJI_MAP['INFO']} Image size distribution:")
    for size_key, items in size_groups.items():
        megapixels = (int(size_key.split('x')[0]) ** 2) / (1024 * 1024)
        logging.log(LOG_LEVEL_MAP["INFO"], 
                    f"  - {size_key}: {len(items)} images ({megapixels:.2f} MP each)")
    
    total_processed = 0
    batch_number = 1
    cumulative_time = 0
    cumulative_inference_time = 0
    
    for size_key, group_items in size_groups.items():
        for i in range(0, len(group_items), MAX_IMAGES_PER_BATCH):
            batch_start_time = time.perf_counter()
            
            batch_items = group_items[i:i + MAX_IMAGES_PER_BATCH]
            batch_contexts = [item[0] for item in batch_items]
            batch_metas = [item[1] for item in batch_items]
            batch_size = len(batch_items)
            
            rbc_scales = batch_metas[0]["rbc_scales"]
            final_side = batch_metas[0]["final_side"]
            
            batch_log_item = {
                "function": f"{function_name}_batch_{batch_number}",
                "status": "processing",
                "data": {
                    "batch_number": batch_number,
                    "batch_size": batch_size,
                    "device": DEVICE,
                    "model_device": str(model_device),
                    "model_dtype": str(model_dtype),
                    "tensor_size": size_key,
                    "scales_processing": rbc_scales,
                    "scale_count": len(rbc_scales),
                    "precision": "fp16" if model_dtype == torch.float16 else "fp32",
                    "total_operations": batch_size * len(rbc_scales),
                    "megapixels_per_image": (final_side ** 2) / (1024 * 1024),
                    "total_megapixels": (batch_size * len(rbc_scales) * final_side ** 2) / (1024 * 1024)
                }
            }
            batch_logs.append(batch_log_item)
            
            batch_megapixels = (batch_size * final_side ** 2) / (1024 * 1024)
            logging.log(LOG_LEVEL_MAP["PROCESSING"], 
                       f"{EMOJI_MAP['PROCESSING']} Batch {batch_number} starting:")
            logging.log(LOG_LEVEL_MAP["PROCESSING"], 
                       f"  - Images: {batch_size} | Resolution: {final_side}x{final_side} | Scales: {len(rbc_scales)}")
            logging.log(LOG_LEVEL_MAP["PROCESSING"], 
                       f"  - Total operations: {batch_size * len(rbc_scales)} | Megapixels: {batch_megapixels:.2f} MP")
            
            try:
                inference_start = time.perf_counter()
                scale_results = {}
                
                with torch.no_grad():
                    use_amp = not RMBG_FULL_PRECISION and DEVICE == "cuda" and getattr(app, 'USE_MIXED_PRECISION', True)
                    autocast_context = torch.amp.autocast('cuda', dtype=torch.float16) if use_amp else contextlib.nullcontext()
                    
                    with autocast_context:
                        for scale_idx, scale in enumerate(rbc_scales):
                            scale_start = time.perf_counter()
                            
                            logging.log(LOG_LEVEL_MAP["PROCESSING"], 
                                       f"{EMOJI_MAP['PROCESSING']} Processing scale {scale}x for {batch_size} images...")
                            
                            scale_tensors = []
                            for ctx_idx, (ctx, meta) in enumerate(batch_items):
                                enhanced_img = meta["enhanced"]
                                
                                if scale == 1.0:
                                    scaled_img = enhanced_img
                                else:
                                    new_size = int(final_side * scale)
                                    scaled_img = enhanced_img.resize(
                                        (new_size, new_size), 
                                        Image.Resampling.LANCZOS
                                    )
                                    
                                    if new_size != final_side:
                                        pad_img = Image.new("RGB", (final_side, final_side), PAD_COLOR)
                                        offset = ((final_side - new_size) // 2, 
                                                 (final_side - new_size) // 2)
                                        pad_img.paste(scaled_img, offset)
                                        scaled_img = pad_img
                                
                                tensor = rmbg_trans(scaled_img)
                                scale_tensors.append(tensor)
                            
                            batch_tensor = torch.stack(scale_tensors).to(model_device, dtype=model_dtype)
                            
                            if DEVICE == "cuda" and torch.cuda.is_available():
                                try:
                                    batch_tensor = batch_tensor.to(memory_format=torch.channels_last)
                                except RuntimeError:
                                    pass
                            
                            model_start = time.perf_counter()
                            
                            graph_key = (batch_size, final_side)
                            use_cuda_graph = (ENABLE_CUDA_GRAPHS and DEVICE == "cuda" and 
                                            torch.cuda.is_available() and not RMBG_FULL_PRECISION)
                            
                            if use_cuda_graph and graph_key in cuda_graph_cache and stream is not None:
                                graph, static_input, static_output = cuda_graph_cache[graph_key]
                                static_input.copy_(batch_tensor)
                                graph.replay()
                                logits = static_output.clone()
                            else:
                                if use_amp:
                                    logits = RMBG_MODEL(batch_tensor)
                                else:
                                    with torch.amp.autocast('cuda', enabled=False):
                                        logits = RMBG_MODEL(batch_tensor)
                                
                                if use_cuda_graph and len(cuda_graph_cache) < 5 and stream is not None:
                                    try:
                                        torch.cuda.synchronize()
                                        static_input = batch_tensor.clone()
                                        
                                        graph = torch.cuda.CUDAGraph()
                                        with torch.cuda.graph(graph):
                                            static_output = RMBG_MODEL(static_input)
                                        
                                        cuda_graph_cache[graph_key] = (graph, static_input, static_output)
                                        logging.debug(f"CUDA graph cached for shape {graph_key}")
                                    except (RuntimeError, AttributeError) as e:
                                        logging.debug(f"CUDA graph capture failed: {e}")
                            
                            if DEVICE == "cuda" and torch.cuda.is_available():
                                try:
                                    torch.cuda.synchronize()
                                except RuntimeError:
                                    pass
                            
                            model_time = round(time.perf_counter() - model_start, 3)
                            
                            if isinstance(logits, (list, tuple)):
                                logits = logits[-1]
                                
                            if logits.shape[1] != 1:
                                logits = logits[:, 1:2]
                                
                            probs = torch.sigmoid(logits).cpu().float().numpy()[:, 0]
                            
                            for ctx_idx, prob in enumerate(probs):
                                if ctx_idx not in scale_results:
                                    scale_results[ctx_idx] = {}
                                scale_results[ctx_idx][scale] = prob
                            
                            scale_time = round(time.perf_counter() - scale_start, 3)
                            images_per_second = batch_size / model_time if model_time > 0 else 0
                            megapixels_per_second = ((batch_size * final_side ** 2) / (1024 * 1024)) / model_time if model_time > 0 else 0
                            
                            logging.log(LOG_LEVEL_MAP["SUCCESS"], 
                                       f"{EMOJI_MAP['SUCCESS']} Scale {scale}x completed:")
                            logging.log(LOG_LEVEL_MAP["INFO"], 
                                       f"  - Time: {scale_time}s (model: {model_time}s)")
                            logging.log(LOG_LEVEL_MAP["INFO"], 
                                       f"  - Speed: {images_per_second:.2f} img/s | {megapixels_per_second:.2f} MP/s")
                            
                            del batch_tensor, logits
                            
                            if DEVICE == "cuda" and torch.cuda.is_available() and len(rbc_scales) > 2 and scale_idx < len(rbc_scales) - 1:
                                try:
                                    torch.cuda.empty_cache()
                                except RuntimeError:
                                    pass
                
                inference_time = round(time.perf_counter() - inference_start, 3)
                avg_time_per_scale = inference_time / len(rbc_scales) if len(rbc_scales) > 0 else 0
                total_operations = batch_size * len(rbc_scales)
                ops_per_second = total_operations / inference_time if inference_time > 0 else 0
                
                logging.log(LOG_LEVEL_MAP["SUCCESS"], 
                           f"{EMOJI_MAP['SUCCESS']} Inference completed:")
                logging.log(LOG_LEVEL_MAP["INFO"], 
                           f"  - Total time: {inference_time}s | Avg per scale: {avg_time_per_scale:.3f}s")
                logging.log(LOG_LEVEL_MAP["INFO"], 
                           f"  - Operations: {total_operations} | Speed: {ops_per_second:.2f} ops/s")
                
                postprocess_start = time.perf_counter()
                
                logging.log(LOG_LEVEL_MAP["PROCESSING"], 
                           f"{EMOJI_MAP['PROCESSING']} Post-processing {batch_size} masks...")
                
                for ctx_idx, (ctx, meta) in enumerate(batch_items):
                    if ctx_idx in scale_results:
                        scale_probs = []
                        scale_weights = []
                        
                        for scale in sorted(rbc_scales, reverse=True):
                            if scale in scale_results[ctx_idx]:
                                scale_probs.append(scale_results[ctx_idx][scale])
                                
                                if scale >= 1.25:
                                    scale_weights.append(0.7)
                                elif scale >= 1.0:
                                    scale_weights.append(0.6)
                                elif scale >= 0.75:
                                    scale_weights.append(0.3)
                                else:
                                    scale_weights.append(0.1)
                        
                        if scale_probs and scale_weights:
                            weights = np.array(scale_weights)
                            weights = weights / weights.sum()
                            
                            combined_prob = np.zeros_like(scale_probs[0])
                            for prob, weight in zip(scale_probs, weights):
                                combined_prob += prob * weight
                        else:
                            combined_prob = np.zeros((final_side, final_side))
                    else:
                        combined_prob = np.zeros((final_side, final_side))
                    
                    mask = (combined_prob > THRESH).astype(np.uint8) * 255
                    
                    rescue_mask = (combined_prob > RESCUE_THRESH).astype(np.uint8) * 255
                    if np.sum(mask) == 0 and np.sum(rescue_mask) > 0:
                        mask = rescue_mask
                        batch_log_item["data"][f"rescue_applied_{ctx_idx}"] = True
                    
                    mask = smooth_mask(mask)
                    alpha = Image.fromarray(mask, "L")
                    r, g, b = meta["pad"].split()
                    rgba = Image.merge("RGBA", [r, g, b, alpha])
                    
                    ctx.pil_img = {"original": [rgba, ctx.filename or "output.webp", None]}
                    total_processed += 1
                
                postprocess_time = round(time.perf_counter() - postprocess_start, 3)
                batch_processing_time = round(time.perf_counter() - batch_start_time, 4)
                
                cumulative_time += batch_processing_time
                cumulative_inference_time += inference_time
                
                batch_images_per_second = batch_size / batch_processing_time if batch_processing_time > 0 else 0
                batch_megapixels = (batch_size * final_side ** 2) / (1024 * 1024)
                batch_mp_per_second = batch_megapixels / batch_processing_time if batch_processing_time > 0 else 0
                
                batch_log_item["status"] = "completed"
                batch_log_item["data"]["processed_count"] = len(batch_contexts)
                batch_log_item["data"]["processing_time"] = batch_processing_time
                batch_log_item["data"]["inference_time"] = inference_time
                batch_log_item["data"]["postprocess_time"] = postprocess_time
                batch_log_item["data"]["images_per_second"] = batch_images_per_second
                batch_log_item["data"]["megapixels_per_second"] = batch_mp_per_second
                
                logging.log(LOG_LEVEL_MAP["SUCCESS"], 
                           f"{EMOJI_MAP['SUCCESS']} Batch {batch_number} completed:")
                logging.log(LOG_LEVEL_MAP["INFO"], 
                           f"  - Total time: {batch_processing_time}s")
                logging.log(LOG_LEVEL_MAP["INFO"], 
                           f"  - Breakdown: inference={inference_time}s, post={postprocess_time}s")
                logging.log(LOG_LEVEL_MAP["INFO"], 
                           f"  - Performance: {batch_images_per_second:.2f} img/s | {batch_mp_per_second:.2f} MP/s")
                
                if DEVICE == "cuda" and torch.cuda.is_available():
                    try:
                        allocated_mb = torch.cuda.memory_allocated(0) / (1024 * 1024)
                        reserved_mb = torch.cuda.memory_reserved(0) / (1024 * 1024)
                    except RuntimeError:
                        allocated_mb = 0
                        reserved_mb = 0
                    logging.log(LOG_LEVEL_MAP["INFO"], 
                               f"  - GPU Memory: allocated={allocated_mb:.1f}MB, reserved={reserved_mb:.1f}MB")
                    
                if DEVICE == "cuda" and torch.cuda.is_available() and batch_number % 5 == 0:
                    try:
                        torch.cuda.empty_cache()
                    except RuntimeError:
                        pass
                    
            except Exception as e:
                batch_processing_time = round(time.perf_counter() - batch_start_time, 4)
                error_trace = traceback.format_exc()
                
                logging.error(f"CRITICAL: Background removal processing failed: {str(e)}")
                logging.error(f"Traceback:\n{error_trace}")
                
                for ctx in batch_contexts:
                    ctx.skip_run = True
                    ctx.error = str(e)
                    ctx.error_traceback = error_trace
                    
                batch_log_item["status"] = "critical_error"
                batch_log_item["exception"] = str(e)
                batch_log_item["traceback"] = error_trace
                batch_log_item["data"]["processing_time"] = batch_processing_time
                
                logging.critical("Terminating due to background removal processing failure")
                sys.exit(1)
            
            batch_number += 1
    
    overall_images_per_second = total_processed / cumulative_time if cumulative_time > 0 else 0
    overall_mp_per_second = total_megapixels / cumulative_time if cumulative_time > 0 else 0
    avg_time_per_image = cumulative_time / total_processed if total_processed > 0 else 0
    
    logging.log(LOG_LEVEL_MAP["SUCCESS"], 
                f"{EMOJI_MAP['SUCCESS']} {function_name} - Final Summary:")
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"  - Total images processed: {total_processed} / {len(valid_contexts)}")
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"  - Total time: {cumulative_time:.2f}s | Inference time: {cumulative_inference_time:.2f}s")
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"  - Overall performance: {overall_images_per_second:.2f} img/s | {overall_mp_per_second:.2f} MP/s")
    logging.log(LOG_LEVEL_MAP["INFO"], 
                f"  - Average time per image: {avg_time_per_image:.3f}s")
    
    batch_logs.append({
        "function": f"{function_name}_summary",
        "status": "info",
        "data": {
            "total_processed": total_processed,
            "total_contexts": len(valid_contexts),
            "total_batches": batch_number - 1,
            "size_groups": {str(k): len(v) for k, v in size_groups.items()},
            "total_time": cumulative_time,
            "total_inference_time": cumulative_inference_time,
            "overall_images_per_second": overall_images_per_second,
            "overall_megapixels_per_second": overall_mp_per_second,
            "average_time_per_image": avg_time_per_image,
            "optimizations_applied": {
                "fp16_inference": not RMBG_FULL_PRECISION and DEVICE == "cuda",
                "matmul_precision": "high",
                "tf32_enabled": torch.backends.cuda.matmul.allow_tf32 if DEVICE == "cuda" and torch.cuda.is_available() else False,
                "cudnn_benchmark": torch.backends.cudnn.benchmark if DEVICE == "cuda" and torch.cuda.is_available() else False
            }
        }
    })
    
    return batch_logs
    
def select_largest_component(contexts, batch_logs):
    function_name = "select_largest_component"
    processed_count = 0
    skipped_count = 0
    error_count = 0
    
    for ctx in contexts:
        if ctx.skip_run or ctx.skip_processing:
            skipped_count += 1
            continue
            
        if "original" not in ctx.pil_img:
            error_count += 1
            continue
            
        try:
            final_rgba, filename, meta = ctx.pil_img["original"]
            alpha_np = np.array(final_rgba.getchannel("A"))
            labeled, num_components = label(alpha_np > 0)
            
            if num_components <= 1:
                processed_count += 1
                continue
            
            regs = find_objects(labeled)
            best_component = None
            best_area = 0
            
            for reg in regs:
                if reg is None:
                    continue
                sy, ey = reg[0].start, reg[0].stop
                sx, ex = reg[1].start, reg[1].stop
                
                area = np.count_nonzero(alpha_np[sy:ey, sx:ex] > 0)
                if area > best_area:
                    center_x = (sx + ex) / 2.0
                    if center_x < final_rgba.width / 2 or best_area == 0:
                        best_area = area
                        best_component = (sx, sy, ex, ey)
            
            if best_component:
                sx, sy, ex, ey = best_component
                final_image = final_rgba.crop((sx, sy, ex, ey))
                ctx.pil_img["original"] = [final_image, filename, meta]
            
            processed_count += 1
            
        except Exception as e:
            error_count += 1
            ctx.skip_run = True
    
    batch_logs.append({
        "function": function_name,
        "status": "info",
        "data": {
            "processed_count": processed_count,
            "skipped_count": skipped_count,
            "error_count": error_count
        }
    })
    
    return batch_logs

def final_pad_sq_batch(contexts, batch_logs):
    function_name = "final_pad_sq_batch"
    processed_count = 0
    skipped_count = 0
    error_count = 0
    
    for ctx in contexts:
        if ctx.skip_run or ctx.skip_processing:
            skipped_count += 1
            continue
            
        if "original" not in ctx.pil_img:
            error_count += 1
            continue
            
        try:
            image, filename, meta = ctx.pil_img["original"]
            padded_image = final_pad_sq(image)
            ctx.pil_img["original"] = [padded_image, filename, meta]
            processed_count += 1
            
        except Exception as e:
            error_count += 1
            batch_logs.append({
                "function": function_name,
                "image_url": ctx.url,
                "status": "error",
                "exception": str(e)
            })
    
    batch_logs.append({
        "function": function_name,
        "status": "info",
        "data": {
            "processed_count": processed_count,
            "skipped_count": skipped_count,
            "error_count": error_count
        }
    })
    
    return batch_logs

# ----------------------------------------------------------------------
# MAIN PIPELINE FUNCTION
# ----------------------------------------------------------------------
def _ensure_models_loaded():
    import app
    app.ensure_models_loaded()

pipeline_step = create_pipeline_step(_ensure_models_loaded)

@pipeline_step
def remove_background(
    contexts: List[ProcessingContext],
    batch_logs: List[dict] | None = None
    ):
    
    if batch_logs is None:
        batch_logs = []
    
    pipeline_start_time = time.perf_counter()
        
    calibration_info = {
        "function": "calibration_info",
        "status": "info",
        "data": {
            "version": CALIBRATION_VERSION,
            "contrast_factor": RBC_CONTRAST_FACTOR,
            "sharpness_factor": RBC_SHARPNESS_FACTOR,
            "size_configs": SIZE_CONFIGS,
            "adaptive_scale_configs": ADAPTIVE_SCALE_CONFIGS,
            "threshold": THRESH,
            "max_images_per_batch": MAX_IMAGES_PER_BATCH,
            "morph_kernel_size": MORPH_KERNEL_SIZE,
            "morph_close_iter": MORPH_CLOSE_ITER,
            "morph_open_iter": MORPH_OPEN_ITER,
            "erosion_iter": EROSION_ITER,
            "gaussian_kernel_size": GAUSSIAN_KERNEL_SIZE,
            "do_guided_filter": DO_GUIDED_FILTER,
            "fill_holes": FILL_HOLES,
            "use_bilateral": USE_BILATERAL,
            "low_load_surface_threshold": LOW_LOAD_SURFACE_THRESHOLD,
            "medium_load_surface_threshold": MEDIUM_LOAD_SURFACE_THRESHOLD,
            "high_load_surface_threshold": HIGH_LOAD_SURFACE_THRESHOLD
        }
    }
    batch_logs.append(calibration_info)
    
    logging.log(LOG_LEVEL_MAP["INFO"], f"{EMOJI_MAP['INFO']} Starting remove_background pipeline for {len(contexts)} items")
    
    valid_contexts = [ctx for ctx in contexts if not (ctx.skip_run or ctx.skip_processing) and hasattr(ctx, '_download_content')]
    total_batches = (len(valid_contexts) + MAX_IMAGES_PER_BATCH - 1) // MAX_IMAGES_PER_BATCH if valid_contexts else 0
    
    batch_processing_log = {
        "function": "batch_processing_info",
        "status": "info", 
        "data": {
            "total_contexts": len(contexts),
            "valid_contexts": len(valid_contexts),
            "max_images_per_batch": MAX_IMAGES_PER_BATCH,
            "estimated_batches": total_batches,
            "adaptive_scaling_enabled": len(valid_contexts) >= MEDIUM_LOAD_SURFACE_THRESHOLD,
            "next_step": "preprocess_images_batch"
        }
    }
    batch_logs.append(batch_processing_log)
    
    logging.log(LOG_LEVEL_MAP["INFO"], f"{EMOJI_MAP['INFO']} Processing {len(valid_contexts)} valid contexts in {total_batches} batches")
    
    preprocess_images_batch(contexts, batch_logs)
    
    process_background_removal(contexts, batch_logs)
    
    batch_completion_log = {
        "function": "background_removal_completed",
        "status": "info",
        "data": {
            "completed_contexts": len([ctx for ctx in contexts if "original" in ctx.pil_img]),
            "total_contexts": len(contexts),
            "next_step": "select_largest_component"
        }
    }
    batch_logs.append(batch_completion_log)
    
    select_largest_component(contexts, batch_logs)
    
    final_pad_sq_batch(contexts, batch_logs)
    
    total_pipeline_time = round(time.perf_counter() - pipeline_start_time, 4)
    
    logging.log(LOG_LEVEL_MAP["SUCCESS"], f"{EMOJI_MAP['SUCCESS']} Completed remove_background pipeline for {len(contexts)} items in {total_pipeline_time}s")
    
    return batch_logs