Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,810 Bytes
18faf97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
# ----------------------------------------------------------------------
# IMPORTS
# ----------------------------------------------------------------------
import os
import cv2
import logging
import numpy as np
import torch
import torch.nn.functional as F
from typing import List, Optional, Tuple
from PIL import Image, ImageDraw
from transformers import AutoProcessor, AutoModelForMaskGeneration
from simple_lama_inpainting import SimpleLama
# ----------------------------------------------------------------------
# MODEL REPOSITORY IDENTIFIERS
# ----------------------------------------------------------------------
SAM_REPO = "facebook/sam-vit-huge"
# ----------------------------------------------------------------------
# MODEL PRECISION SETTINGS
# ----------------------------------------------------------------------
SAM_FULL_PRECISION = True
LAMA_FULL_PRECISION = True
# ----------------------------------------------------------------------
# GLOBAL MODEL INSTANCES
# ----------------------------------------------------------------------
SAM_PROCESSOR = None
SAM_MODEL = None
SIMPLE_LAMA = None
# ----------------------------------------------------------------------
# INITIALIZE MODELS
# ----------------------------------------------------------------------
def initialize_sam_and_lama(device="cuda"):
global SAM_PROCESSOR, SAM_MODEL, SIMPLE_LAMA
if SAM_PROCESSOR is None or SAM_MODEL is None or SIMPLE_LAMA is None:
logging.info("Loading SAM model...")
SAM_PROCESSOR = AutoProcessor.from_pretrained(SAM_REPO)
SAM_MODEL = load_sam_model(SAM_REPO, SAM_FULL_PRECISION)
logging.info("Loading LaMa inpainting model...")
lama_device = "cpu"
logging.info("LAMA will use CPU - this is intentional for compatibility")
SIMPLE_LAMA = SimpleLama(device=lama_device)
logging.info(f"Successfully loaded LAMA model on {lama_device.upper()}")
def load_sam_model(repo_id: str, full_precision: bool):
try:
torch.cuda.empty_cache()
model = AutoModelForMaskGeneration.from_pretrained(
repo_id,
device_map="auto",
torch_dtype=torch.float32 if full_precision else torch.float16
)
if not hasattr(model, 'hf_device_map'):
model = model.cuda()
if not full_precision:
model = model.half()
model.eval()
with torch.no_grad():
logging.info(f"Verifying SAM model is on CUDA")
param = next(model.parameters())
if not param.is_cuda:
model = model.cuda()
logging.warning(f"Forced SAM model to CUDA")
logging.info(f"SAM model device: {param.device}")
return model
except Exception as e:
logging.error(f"Failed to load SAM model: {e}")
raise
# ----------------------------------------------------------------------
# ARTIFACT UTILITIES
# ----------------------------------------------------------------------
ARTIFACTS_LIST = ["jewelry", "necklace", "bracelet", "ring", "earrings", "watch", "glasses"]
# ----------------------------------------------------------------------
# UNDER DEVELOPMENT
# ----------------------------------------------------------------------
@pipeline_step
def remove_object_batch(contexts: List[ProcessingContext], batch_logs: List[dict]) -> None:
initialize_sam_and_lama()
logging.info(f"[DEBUG] remove_object_batch => Starting with {len(contexts)} contexts.")
for ctx_idx, ctx in enumerate(contexts):
step_log = {
"function": "remove_object_batch",
"image_url": getattr(ctx, "url", "unknown"),
"status": None,
"artifacts_found": [],
"image_dimensions": None,
"artifact_boxes": []
}
if ctx.skip_run or ctx.skip_processing:
step_log["status"] = "skipped"
batch_logs.append(step_log)
continue
if "original" not in ctx.pil_img:
logging.debug(f"(Context #{ctx_idx}) => RBC 'original' missing => {ctx.url}")
step_log["status"] = "error"
step_log["exception"] = "No RBC 'original' in ctx"
ctx.skip_run = True
batch_logs.append(step_log)
continue
dr = ctx.detection_result
if not dr or dr.get("status") != "ok":
logging.debug(f"(Context #{ctx_idx}) => No valid detection => {ctx.url}")
step_log["status"] = "no_detection"
batch_logs.append(step_log)
continue
boxes = dr.get("boxes", [])
kws = dr.get("final_keywords", [])
if len(boxes) != len(kws) or not boxes:
logging.debug(f"(Context #{ctx_idx}) => mismatch or no boxes => {ctx.url}")
step_log["status"] = "no_boxes_in_detection"
batch_logs.append(step_log)
continue
artifact_indices = [i for i, kw_ in enumerate(kws) if kw_ in ARTIFACTS_LIST]
if not artifact_indices:
logging.debug(f"(Context #{ctx_idx}) => No artifacts found => {ctx.url}. Skipping flatten.")
step_log["status"] = "no_artifacts_found"
batch_logs.append(step_log)
continue
pil_rgba, orig_fname, _ = ctx.pil_img["original"]
logging.debug(f"(Context #{ctx_idx}) Flattening RBC image to white background (since artifacts exist).")
flattened = Image.new("RGB", pil_rgba.size, (255, 255, 255))
flattened.paste(pil_rgba.convert("RGB"), mask=pil_rgba.getchannel("A"))
logging.debug(f"(Context #{ctx_idx}) Background conversion complete.")
updated_img = flattened
found_labels = []
for art_i in artifact_indices:
box_ = boxes[art_i]
kw_ = kws[art_i]
step_log["artifact_boxes"].append({
"original_box": box_,
"label": kw_
})
w_img, h_img = updated_img.size
expanded = expand_bbox(box_, w_img, h_img, pad=24)
logging.debug(f"(Context #{ctx_idx}) Artifact {art_i}: Expanded box from {box_} to {expanded}.")
step_log["artifact_boxes"][-1]["expanded_box"] = expanded
logging.debug(f"(Context #{ctx_idx}) Removing object in region {expanded}.")
try:
updated_img = remove_object_inplace(
updated_img,
expanded,
SAM_PROCESSOR,
SAM_MODEL,
SIMPLE_LAMA,
device="cuda",
debug_save_prefix=f"dbg_ctx{ctx_idx}_artifact{art_i}",
dilate_mask=True,
dilate_kernel_size=40
)
logging.debug(f"(Context #{ctx_idx}) Object removal complete for artifact {art_i}.")
found_labels.append(kw_)
except RuntimeError as re:
logging.warning(f"[WARNING] TorchScript inpainting failed for artifact {art_i}, skipping removal.\n{re}")
step_log["artifact_boxes"][-1]["skipped_inpainting"] = True
ctx.pil_img["original"] = [updated_img, orig_fname, None]
step_log["artifacts_found"] = found_labels
step_log["status"] = "artifacts_removed"
step_log["image_dimensions"] = (updated_img.width, updated_img.height)
logging.debug(f"(Context #{ctx_idx}) => Artifacts removed => {ctx.url}")
batch_logs.append(step_log)
logging.debug("[DEBUG] remove_object_batch => Finished.\n")
def expand_bbox(box, w, h, pad=24):
x1, y1, x2, y2 = box
expanded_box = [
max(0, x1 - pad),
max(0, y1 - pad),
min(w, x2 + pad),
min(h, y2 + pad)
]
logging.debug(f"expand_bbox => Original: {box}, Expanded: {expanded_box}")
return expanded_box
def remove_object_inplace(
pil_rgb: Image.Image,
bbox: List[int],
sam_processor,
sam_model,
lama_model_jit,
device="cuda",
debug_save_prefix=None,
dilate_mask=False,
dilate_kernel_size=15
) -> Image.Image:
logging.debug(f"remove_object_inplace => Processing bbox {bbox} on image size {pil_rgb.size}")
image_rgb = pil_rgb.convert("RGB")
inputs = sam_processor(
images=image_rgb,
input_boxes=[[[bbox[0], bbox[1], bbox[2], bbox[3]]]],
return_tensors="pt"
).to(device)
if not SAM_FULL_PRECISION and sam_model.dtype == torch.float16:
inputs = {k: v.half() if v.dtype == torch.float32 else v for k, v in inputs.items()}
with torch.no_grad():
out_sam = sam_model(**inputs)
pred_masks = out_sam.pred_masks
if pred_masks.ndim == 5 and pred_masks.shape[2] == 3:
pred_masks = pred_masks[:, 0, 0, :, :]
elif pred_masks.ndim == 4 and pred_masks.shape[1] == 3:
pred_masks = pred_masks[:, 0, :, :]
if pred_masks.ndim == 3:
pred_masks = pred_masks.unsqueeze(1)
if "reshaped_input_sizes" in inputs:
t_h, t_w = inputs["reshaped_input_sizes"][0].tolist()
pred_masks = F.interpolate(
pred_masks,
size=(t_h, t_w),
mode="bilinear",
align_corners=False
)
mask_bin = (pred_masks[0, 0] > 0.5).cpu().numpy().astype(np.uint8)
if dilate_mask:
kernel = np.ones((dilate_kernel_size, dilate_kernel_size), dtype=np.uint8)
mask_bin = cv2.dilate(mask_bin, kernel, iterations=1)
logging.debug(f"remove_object_inplace => Dilated mask mean: {mask_bin.mean():.6f}")
updated_crop = inpaint_region_with_lama_multi_fallback(
image_rgb,
mask_bin,
bbox,
lama_model_jit
)
logging.debug(f"remove_object_inplace => Inpainting complete for bbox {bbox}")
return updated_crop
def inpaint_region_with_lama_multi_fallback(
image_rgb: Image.Image,
mask_bin: np.ndarray,
bbox: List[int],
lama_model_jit
) -> Image.Image:
x1, y1, x2, y2 = bbox
subregion = image_rgb.crop((x1, y1, x2, y2))
mask_sub = mask_bin[y1:y2, x1:x2].copy()
orig_w, orig_h = subregion.size
logging.debug(f"inpaint_region_with_lama_multi_fallback => Cropped region: w={orig_w}, h={orig_h}")
if orig_w < 2 or orig_h < 2:
logging.warning("Subregion too small for inpainting. Filling with white instead.")
return fill_white(image_rgb, bbox)
max_dim = max(orig_w, orig_h)
target_size = 1024
scale = 1.0
if max_dim > target_size:
scale = target_size / float(max_dim)
new_w = max(1, int(round(orig_w * scale)))
new_h = max(1, int(round(orig_h * scale)))
subregion = subregion.resize((new_w, new_h), Image.Resampling.LANCZOS)
mask_sub = cv2.resize(mask_sub, (new_w, new_h), interpolation=cv2.INTER_NEAREST)
logging.debug(f"inpaint_region_with_lama_multi_fallback => scaled to {new_w}x{new_h} (factor={scale:.3f})")
else:
new_w, new_h = orig_w, orig_h
pad_w = (32 - (new_w % 32)) % 32
pad_h = (32 - (new_h % 32)) % 32
logging.debug(f"inpaint_region_with_lama_multi_fallback => pad_w={pad_w}, pad_h={pad_h}")
sub_tensor = (
torch.from_numpy(np.array(subregion))
.permute(2, 0, 1)
.unsqueeze(0)
.float() / 255.0
)
mask_tensor = torch.from_numpy(mask_sub.astype(np.float32)).unsqueeze(0).unsqueeze(0)
original_f_pad = F.pad
original_torch_pad = getattr(torch, "pad", None)
original_reflection = None
if hasattr(torch._C._nn, "reflection_pad2d"):
original_reflection = torch._C._nn.reflection_pad2d
def custom_f_pad(inp, pad_vals, mode="constant", value=0):
if mode == "reflect":
mode = "replicate"
return original_f_pad(inp, pad_vals, mode=mode, value=value)
def custom_torch_pad(inp, pad_vals, mode="constant", value=0):
if mode == "reflect":
mode = "replicate"
return original_torch_pad(inp, pad_vals, mode=mode, value=value)
def replicate_pad2d(*args, **kwargs):
return F.replication_pad2d(*args, **kwargs)
try:
F.pad = custom_f_pad
if original_torch_pad is not None:
torch.pad = custom_torch_pad
if original_reflection is not None:
torch._C._nn.reflection_pad2d = replicate_pad2d
sub_tensor_padded = F.pad(sub_tensor, (0, pad_w, 0, pad_h), mode='reflect')
mask_tensor_padded = F.pad(mask_tensor, (0, pad_w, 0, pad_h), mode='constant', value=0)
result_tensor = None
try:
with torch.no_grad():
sub_tensor_gpu = sub_tensor_padded.to("cuda")
mask_tensor_gpu = mask_tensor_padded.to("cuda")
result_tensor = lama_model_jit.model.forward(sub_tensor_gpu, mask_tensor_gpu)
except RuntimeError as re_gpu:
logging.warning(f"TorchScript GPU inpainting failed => {re_gpu}\nAttempting CPU fallback...")
try:
result_tensor = inpaint_torchscript_cpu_fallback(sub_tensor_padded, mask_tensor_padded, lama_model_jit)
except RuntimeError as re_cpu:
logging.warning(f"TorchScript CPU fallback also failed => {re_cpu}\nFilling with white region.")
return fill_white(image_rgb, bbox)
finally:
F.pad = original_f_pad
if original_torch_pad is not None:
torch.pad = original_torch_pad
if original_reflection is not None:
torch._C._nn.reflection_pad2d = original_reflection
if result_tensor is None:
logging.warning("Result is None after fallback => filling with white region.")
return fill_white(image_rgb, bbox)
result_tensor_cropped = result_tensor[:, :, :new_h, :new_w]
out_np = (
result_tensor_cropped.squeeze(0)
.permute(1, 2, 0)
.mul(255)
.clamp(0, 255)
.byte()
.cpu()
.numpy()
)
inpainted_pil = Image.fromarray(out_np)
if scale != 1.0:
inpainted_pil = inpainted_pil.resize((orig_w, orig_h), Image.Resampling.LANCZOS)
final_sub = Image.new("RGB", (orig_w, orig_h), (255, 255, 255))
final_sub.paste(inpainted_pil, (0, 0))
out_img = image_rgb.copy()
out_img.paste(final_sub, (x1, y1))
logging.debug(f"inpaint_region_with_lama_multi_fallback => done for region {bbox}")
return out_img
def inpaint_torchscript_cpu_fallback(
sub_tensor_padded: torch.Tensor,
mask_tensor_padded: torch.Tensor,
lama_model_jit
) -> torch.Tensor:
orig_device = next(lama_model_jit.model.parameters()).device
lama_model_jit.model.to("cpu")
sub_cpu = sub_tensor_padded.cpu()
mask_cpu = mask_tensor_padded.cpu()
with torch.no_grad():
result_cpu = lama_model_jit.model.forward(sub_cpu, mask_cpu)
lama_model_jit.model.to(orig_device)
return result_cpu
def fill_white(image_rgb: Image.Image, bbox: List[int]) -> Image.Image:
x1, y1, x2, y2 = bbox
ret_img = image_rgb.copy()
draw = ImageDraw.Draw(ret_img)
draw.rectangle([x1, y1, x2, y2], fill=(255, 255, 255))
return ret_img
def inpaint_region_with_lama_gpu_only(
image_rgb: Image.Image,
mask_bin: np.ndarray,
bbox: List[int],
lama_model,
debug_save_prefix: Optional[str] = None
) -> Image.Image:
x1, y1, x2, y2 = bbox
subregion = image_rgb.crop((x1, y1, x2, y2))
mask_sub = mask_bin[y1:y2, x1:x2].copy()
orig_w, orig_h = subregion.size
if orig_w < 2 or orig_h < 2:
return image_rgb
target_size = 1024
scale = 1.0
max_dim = max(orig_w, orig_h)
if max_dim > target_size:
scale = target_size / float(max_dim)
new_w = max(1, int(round(orig_w * scale)))
new_h = max(1, int(round(orig_h * scale)))
subregion = subregion.resize((new_w, new_h), Image.Resampling.LANCZOS)
mask_sub = cv2.resize(mask_sub, (new_w, new_h), interpolation=cv2.INTER_NEAREST)
else:
new_w, new_h = orig_w, orig_h
pad_w = (32 - (new_w % 32)) % 32
pad_h = (32 - (new_h % 32)) % 32
sub_np = np.array(subregion)
sub_tensor = (
torch.from_numpy(sub_np)
.permute(2, 0, 1)
.unsqueeze(0)
.float()
.to("cuda")
/ 255.0
).contiguous()
mask_tensor = (
torch.from_numpy((mask_sub > 0).astype(np.float32))
.unsqueeze(0)
.unsqueeze(0)
.float()
.to("cuda")
).contiguous()
original_F_pad = F.pad
original_torch_pad = getattr(torch, "pad", None)
def custom_F_pad(input, pad_vals, mode="constant", value=0):
if mode == "reflect":
mode = "replicate"
return original_F_pad(input, pad_vals, mode=mode, value=value)
def custom_torch_pad(input, pad_vals, mode="constant", value=0):
if mode == "reflect":
mode = "replicate"
return original_torch_pad(input, pad_vals, mode=mode, value=value)
original_reflection_pad2d = None
if hasattr(torch._C._nn, 'reflection_pad2d'):
original_reflection_pad2d = torch._C._nn.reflection_pad2d
def no_reflection_pad2d(*args, **kwargs):
return F.replication_pad2d(*args, **kwargs)
try:
F.pad = custom_F_pad
if original_torch_pad is not None:
torch.pad = custom_torch_pad
if original_reflection_pad2d is not None:
torch._C._nn.reflection_pad2d = no_reflection_pad2d
sub_tensor_padded = F.pad(sub_tensor, (0, pad_w, 0, pad_h), mode='reflect')
mask_tensor_padded = F.pad(mask_tensor, (0, pad_w, 0, pad_h), mode='constant', value=0)
try:
with torch.no_grad():
result_tensor = lama_model.model.forward(sub_tensor_padded, mask_tensor_padded)
except RuntimeError as e:
result_tensor = run_lama_on_cpu_fallback(
sub_tensor_padded.cpu(),
mask_tensor_padded.cpu(),
lama_model
)
finally:
F.pad = original_F_pad
if original_torch_pad is not None:
torch.pad = original_torch_pad
if original_reflection_pad2d is not None:
torch._C._nn.reflection_pad2d = original_reflection_pad2d
result_tensor_cropped = result_tensor[:, :, :new_h, :new_w]
result_np = (
result_tensor_cropped.squeeze(0)
.permute(1, 2, 0)
.mul(255)
.clamp(0, 255)
.cpu()
.numpy()
.astype(np.uint8)
)
inpainted_pil = Image.fromarray(result_np)
if scale != 1.0:
inpainted_pil = inpainted_pil.resize((orig_w, orig_h), Image.Resampling.LANCZOS)
final_sub = Image.new("RGB", (orig_w, orig_h), (255, 255, 255))
final_sub.paste(inpainted_pil, (0, 0))
out_img = image_rgb.copy()
out_img.paste(final_sub, (x1, y1))
torch.cuda.empty_cache()
return out_img.convert("RGB")
def run_lama_on_cpu_fallback(
sub_tensor_padded_cpu: torch.Tensor,
mask_tensor_padded_cpu: torch.Tensor,
lama_model
) -> torch.Tensor:
with torch.no_grad():
orig_device = next(lama_model.model.parameters()).device
lama_model.model.to("cpu")
sub_t = sub_tensor_padded_cpu
mask_t = mask_tensor_padded_cpu
result = lama_model.model.forward(sub_t, mask_t)
lama_model.model.to(orig_device)
return result
# ----------------------------------------------------------------------
# END UNDER DEVELOPMENT
# ----------------------------------------------------------------------
|