GitHub Actions
Deploy to Hugging Face Space: product-image-update-port-10
18faf97
# ----------------------------------------------------------------------
# IMPORTS
# ----------------------------------------------------------------------
import io
import json
import re
import traceback
import time
import logging
import os
from typing import Dict, List, Optional, Tuple, Any, Callable, Union
from PIL import Image
from pydantic import BaseModel, Field
import torch
import numpy as np
# Import from logging_utils
try:
from .logging_utils import get_system_info, cleanup_memory, LOG_LEVEL_MAP, EMOJI_MAP
except ImportError:
# Try alternative import paths
try:
from logging_utils import get_system_info, cleanup_memory, LOG_LEVEL_MAP, EMOJI_MAP
except ImportError:
# Fallback implementations
def get_system_info():
return {}
def cleanup_memory():
pass
LOG_LEVEL_MAP = {}
EMOJI_MAP = {}
# ----------------------------------------------------------------------
# CUSTOM EXCEPTIONS
# ----------------------------------------------------------------------
class ModelNotLoadedException(Exception):
pass
class PipelineExecutionError(Exception):
def __init__(self, message: str, step: Optional[str] = None):
self.message = message
self.step = step
super().__init__(self.message)
class ConfigurationError(Exception):
pass
class ModelInferenceError(Exception):
pass
class ImageProcessingError(Exception):
pass
# ----------------------------------------------------------------------
# REQUEST/RESPONSE MODELS
# ----------------------------------------------------------------------
class DetectRequest(BaseModel):
data: List[Any]
options: Optional[Dict[str, Any]] = Field(default_factory=dict)
class ProcessingError(BaseModel):
type: str
message: str
step: str
traceback: Optional[str] = None
class ProcessingWarning(BaseModel):
type: str
message: str
step: str
class ProcessedImage(BaseModel):
url: str
status: str
base64_image: Optional[str] = None
color: Optional[str] = None
image_type: Optional[str] = None
artifacts: Optional[str] = None
processing_time: Optional[float] = None
detections: Optional[Dict[str, int]] = None
class ProcessingResponse(BaseModel):
processed_images: List[ProcessedImage]
status: Optional[str] = None
warnings: Optional[List[ProcessingWarning]] = None
total_processing_time: Optional[float] = None
system_info: Optional[Dict[str, Any]] = None
# ----------------------------------------------------------------------
# DETECTION RESULT MODELS
# ----------------------------------------------------------------------
class BoundingBox(BaseModel):
x1: int
y1: int
x2: int
y2: int
def to_list(self) -> List[int]:
return [self.x1, self.y1, self.x2, self.y2]
def area(self) -> int:
return (self.x2 - self.x1) * (self.y2 - self.y1)
def center(self) -> Tuple[float, float]:
return ((self.x1 + self.x2) / 2, (self.y1 + self.y2) / 2)
class Detection(BaseModel):
box: BoundingBox
label: str
score: float
model: str
keyword: Optional[str] = None
# ----------------------------------------------------------------------
# PROCESSING CONTEXT CLASS
# ----------------------------------------------------------------------
class ProcessingContext:
def __init__(self, url: str, product_type: str, keywords: List[str]):
self.url = url
self.product_type = product_type
self.keywords = keywords
self.skip_run = False
self.skip_processing = False
self.filename: Optional[str] = None
self.final_base64: Optional[str] = None
self.pil_img: Dict[str, Any] = {}
self.define_result: Dict[str, Any] = {}
self.detection_result: Dict[str, Any] = {}
self.grounding_dino_result: Dict[str, Any] = {}
self.box_colors: List[Tuple[int, int, int, int]] = []
self.adjusted_blue_box: Optional[Tuple[int, int, int, int]] = None
self.final_color: str = "none"
self.final_image_type: str = "none"
self.pad_info = {"left": 0, "right": 0, "top": 0, "bottom": 0}
# Performance tracking
self.timing: Dict[str, float] = {}
self.memory_usage: Dict[str, Dict[str, float]] = {}
def add_timing(self, step: str, duration: float):
self.timing[step] = duration
def add_memory_usage(self, step: str):
self.memory_usage[step] = get_system_info()
# ----------------------------------------------------------------------
# PIPELINE DECORATOR
# ----------------------------------------------------------------------
def create_pipeline_step(ensure_models_loaded_func: Callable) -> Callable:
def pipeline_step(func: Callable) -> Callable:
def wrapper(contexts: List[ProcessingContext], batch_logs: Optional[List[Dict]] = None) -> Any:
if batch_logs is None:
batch_logs = []
# Only load models if not already loaded
# The ensure_models_loaded_func should internally check if models are loaded
ensure_models_loaded_func()
start_time = time.time()
try:
# Memory cleanup before processing
if len(contexts) > 10: # For large batches
cleanup_memory()
result = func(contexts, batch_logs)
processing_time = round(time.time() - start_time, 3)
processed_count = sum(
not context.skip_run and not context.skip_processing
for context in contexts
)
log_data = {
"function_name": func.__name__,
"spent_time_seconds": processing_time,
"processed_image_count": processed_count,
"batch_log": batch_logs,
"system_info": get_system_info()
}
log_content = custom_dumps(log_data)
print(log_content, flush=True)
# Memory cleanup after processing large batches
if processed_count > 10:
cleanup_memory()
return result
except Exception as e:
error_trace = traceback.format_exc()
processing_time = round(time.time() - start_time, 3)
logging.error(f"Error in {func.__name__}: {str(e)}")
error_log = {
"function_name": func.__name__,
"spent_time_seconds": processing_time,
"error": str(e),
"error_type": type(e).__name__,
"traceback": error_trace,
"system_info": get_system_info()
}
log_content = custom_dumps(error_log)
print(log_content, flush=True)
for context in contexts:
context.skip_run = True
batch_logs.append({
"function": func.__name__,
"status": "error",
"error": str(e),
"error_type": type(e).__name__
})
# Cleanup on error - but skip if CUDA initialization error
if "CUDA must not be initialized" not in str(e):
try:
cleanup_memory()
except Exception:
pass # Ignore cleanup errors
raise
return wrapper
return pipeline_step
# ----------------------------------------------------------------------
# IMAGE UTILITIES
# ----------------------------------------------------------------------
def validate_image(image: Union[Image.Image, np.ndarray]) -> bool:
if isinstance(image, Image.Image):
return image.size[0] > 0 and image.size[1] > 0
elif isinstance(image, np.ndarray):
return image.shape[0] > 0 and image.shape[1] > 0
return False
def resize_image_aspect_ratio(image: Image.Image, max_size: int = 1920) -> Image.Image:
width, height = image.size
if width > max_size or height > max_size:
if width > height:
new_width = max_size
new_height = int(height * (max_size / width))
else:
new_height = max_size
new_width = int(width * (max_size / height))
return image.resize((new_width, new_height), Image.Resampling.LANCZOS)
return image
# ----------------------------------------------------------------------
# JSON FORMATTING UTILITIES
# ----------------------------------------------------------------------
def custom_dumps(data: Any) -> str:
def default_handler(obj):
if isinstance(obj, (BoundingBox, Detection)):
return obj.model_dump()
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif torch.is_tensor(obj):
return obj.cpu().numpy().tolist()
elif isinstance(obj, (np.integer, np.floating)):
return obj.item()
elif hasattr(obj, '__dict__'):
return obj.__dict__
else:
return str(obj)
text = json.dumps(data, indent=2, default=default_handler)
# Format bounding boxes on single lines
box_pattern = re.compile(
r'\[\s*(-?\d+(?:\.\d+)?),\s*(-?\d+(?:\.\d+)?),\s*(-?\d+(?:\.\d+)?),\s*(-?\d+(?:\.\d+)?)(?:,\s*)?\s*\]',
re.MULTILINE
)
text = box_pattern.sub(r'[\1, \2, \3, \4]', text)
return text
# ----------------------------------------------------------------------
# ERROR RECOVERY UTILITIES
# ----------------------------------------------------------------------
def safe_model_inference(model_func: Callable, *args, **kwargs) -> Any:
max_retries = kwargs.pop('max_retries', 3)
retry_delay = kwargs.pop('retry_delay', 1.0)
for attempt in range(max_retries):
try:
return model_func(*args, **kwargs)
except (torch.cuda.OutOfMemoryError, RuntimeError) as e:
if "out of memory" in str(e).lower():
logging.warning(f"GPU OOM on attempt {attempt + 1}, cleaning memory...")
cleanup_memory()
if attempt < max_retries - 1:
time.sleep(retry_delay)
continue
raise ModelInferenceError(f"Model inference failed: {str(e)}")
except Exception as e:
if attempt < max_retries - 1:
logging.warning(f"Model inference attempt {attempt + 1} failed: {str(e)}")
time.sleep(retry_delay)
continue
raise ModelInferenceError(f"Model inference failed after {max_retries} attempts: {str(e)}")
raise ModelInferenceError("Model inference failed: max retries exceeded")