# ---------------------------------------------------------------------- # IMPORTS # ---------------------------------------------------------------------- import torch import logging import time import spaces import sys import traceback from PIL import Image from typing import List, Optional, Any from collections import defaultdict from src.utils import LOG_LEVEL_MAP, EMOJI_MAP # ---------------------------------------------------------------------- # RT-DETR CONSTANTS # ---------------------------------------------------------------------- RTDETR_CONF = 0.4 RTDETR_ARTIFACT_CONF = 0.35 # ---------------------------------------------------------------------- # MODEL LABEL CONFIGURATION # ---------------------------------------------------------------------- MODEL_LABEL_CONFIG = { "rtdetr_model": { "person_list": { "person": ["person"] }, "product_type_list": {}, "head_list": {}, "shoes_list": {}, "clothing_features_list": { "collar": ["tie"] }, "artifacts_list": { "bag": ["backpack", "handbag", "suitcase"], "cup": ["bottle", "wine glass", "cup"], "umbrella": ["umbrella"], "book": ["book"], "phone": ["cell phone"], "camera": [], "other": ["fork", "knife", "spoon", "bowl", "frisbee", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "microwave", "oven", "toaster", "sink", "refrigerator", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"] } } } # ---------------------------------------------------------------------- # RT-DETR HELPER FUNCTIONS # ---------------------------------------------------------------------- def get_rtdetr_clothing_labels(): clothing_labels = set() rtdetr_config = MODEL_LABEL_CONFIG.get("rtdetr_model", {}) for keyword, labels in rtdetr_config.get("person_list", {}).items(): clothing_labels.update(labels) for keyword, labels in rtdetr_config.get("product_type_list", {}).items(): clothing_labels.update(labels) clothing_labels.update(["coat", "dress", "jacket", "shirt", "skirt", "pants", "shorts"]) return clothing_labels def get_rtdetr_person_and_product_labels(): labels = set() rtdetr_config = MODEL_LABEL_CONFIG.get("rtdetr_model", {}) for keyword, label_list in rtdetr_config.get("person_list", {}).items(): labels.update(label_list) for keyword, label_list in rtdetr_config.get("product_type_list", {}).items(): labels.update(label_list) labels.update(["person", "coat", "dress", "jacket", "shirt", "skirt", "pants", "shorts"]) return labels def get_rtdetr_artifact_labels(): artifact_labels = set() rtdetr_config = MODEL_LABEL_CONFIG.get("rtdetr_model", {}) for keyword, labels in rtdetr_config.get("artifacts_list", {}).items(): if keyword != "other": artifact_labels.update(labels) return artifact_labels def get_label_name_from_model(model, label_id): if hasattr(model, 'config') and hasattr(model.config, 'id2label'): return model.config.id2label.get(label_id, f"unknown_{label_id}").lower() if hasattr(model, 'model_labels') and isinstance(model.model_labels, dict): return model.model_labels.get(label_id, f"unknown_{label_id}").lower() return f"unknown_{label_id}" def map_label_to_keyword(label_name: str, valid_kws: List[str], model_name: str) -> Optional[str]: ln = label_name.strip().lower() model_config = MODEL_LABEL_CONFIG.get(model_name, {}) for list_type in ["person_list", "product_type_list", "head_list", "shoes_list", "clothing_features_list", "artifacts_list"]: category_config = model_config.get(list_type, {}) for keyword, labels in category_config.items(): if keyword in valid_kws: for label in labels: if ln == label.lower() or ln in label.lower(): return keyword return None def process_rtdetr_results(results, model, label_set, threshold, fallback_box=None): try: if isinstance(results, list): if len(results) > 0: result = results[0] else: return None, 0.0, None else: result = results found_box = None found_score = 0.0 found_label = None for score, label, box in zip(result["scores"], result["labels"], result["boxes"]): score_val = score.item() if score_val < threshold: continue label_id = label.item() label_name = get_label_name_from_model(model, label_id) if label_name in label_set: x1, y1, x2, y2 = [int(val) for val in box.tolist()] found_box = [x1, y1, x2, y2] found_score = score_val found_label = label_name break return found_box, found_score, found_label except Exception as e: logging.log(LOG_LEVEL_MAP["WARNING"], f"{EMOJI_MAP['WARNING']} Error processing RTDETR results: {e}") return fallback_box, 0.0, None # ---------------------------------------------------------------------- # RT-DETR DETECTION FUNCTIONS # ---------------------------------------------------------------------- def detect_rtdetr_in_roi(roi_rgb, RTDETR_PROCESSOR, RTDETR_MODEL, DEVICE, log_item): boxes = [] labels = [] scores = [] raw_labels = [] try: rtdetr_inputs = RTDETR_PROCESSOR(images=roi_rgb, return_tensors="pt") rtdetr_inputs = {k: v.to(DEVICE) for k, v in rtdetr_inputs.items()} with torch.no_grad(): rtdetr_outputs = RTDETR_MODEL(**rtdetr_inputs) rtdetr_results = RTDETR_PROCESSOR.post_process_object_detection( rtdetr_outputs, target_sizes=torch.tensor([[roi_rgb.height, roi_rgb.width]]).to(DEVICE), threshold=RTDETR_CONF ) if isinstance(rtdetr_results, list) and len(rtdetr_results) > 0: result = rtdetr_results[0] else: result = rtdetr_results for score, label, box in zip(result["scores"], result["labels"], result["boxes"]): label_id = label.item() score_val = score.item() x1, y1, x2, y2 = [int(val) for val in box.tolist()] label_name = get_label_name_from_model(RTDETR_MODEL, label_id) boxes.append([x1, y1, x2, y2]) labels.append(label_id) scores.append(score_val) raw_labels.append(label_name) logging.log(LOG_LEVEL_MAP["INFO"], f"rtdetr_model: {EMOJI_MAP['INFO']} RT-DETR detected: {label_name} at score {score_val:.3f}") except Exception as e: error_msg = f"RTDETR detection error: {str(e)}" error_trace = traceback.format_exc() logging.log(LOG_LEVEL_MAP["WARNING"], f"{EMOJI_MAP['WARNING']} {error_msg}") logging.error(f"Traceback:\n{error_trace}") log_item["warnings"] = log_item.get("warnings", []) + [error_msg] log_item["traceback"] = error_trace if "CUDA must not be initialized" in str(e): logging.critical("CUDA initialization error in Spaces Zero GPU environment") sys.exit(1) return boxes, labels, scores, raw_labels def detect_rtdetr_artifacts_in_roi(roi_rgb, keywords, RTDETR_PROCESSOR, RTDETR_MODEL, DEVICE, log_item): boxes = [] labels = [] scores = [] raw_labels = [] try: rtdetr_inputs = RTDETR_PROCESSOR(images=roi_rgb, return_tensors="pt") rtdetr_inputs = {k: v.to(DEVICE) for k, v in rtdetr_inputs.items()} with torch.no_grad(): rtdetr_outputs = RTDETR_MODEL(**rtdetr_inputs) rtdetr_results = RTDETR_PROCESSOR.post_process_object_detection( rtdetr_outputs, target_sizes=torch.tensor([[roi_rgb.height, roi_rgb.width]]).to(DEVICE), threshold=RTDETR_ARTIFACT_CONF ) rtdetr_artifact_labels = get_rtdetr_artifact_labels() if isinstance(rtdetr_results, list) and len(rtdetr_results) > 0: result = rtdetr_results[0] else: result = rtdetr_results for score, label, box in zip(result["scores"], result["labels"], result["boxes"]): label_id = label.item() score_val = score.item() if score_val < RTDETR_ARTIFACT_CONF: continue label_name = get_label_name_from_model(RTDETR_MODEL, label_id) if label_name in rtdetr_artifact_labels: x1, y1, x2, y2 = [int(val) for val in box.tolist()] artifact_keyword = map_label_to_keyword(label_name, keywords, "rtdetr_model") if not artifact_keyword: continue boxes.append([x1, y1, x2, y2]) labels.append(label_id) scores.append(score_val) raw_labels.append(label_name) logging.log(LOG_LEVEL_MAP["INFO"], f"rtdetr_model: {EMOJI_MAP['INFO']} Artifact detected: {label_name} at score {score_val:.3f}") except Exception as e: error_msg = f"RTDETR artifact detection error: {str(e)}" error_trace = traceback.format_exc() logging.log(LOG_LEVEL_MAP["WARNING"], f"{EMOJI_MAP['WARNING']} {error_msg}") logging.error(f"Traceback:\n{error_trace}") log_item["warnings"] = log_item.get("warnings", []) + [error_msg] log_item["traceback"] = error_trace if "CUDA must not be initialized" in str(e): logging.critical("CUDA initialization error in Spaces Zero GPU environment") sys.exit(1) return boxes, labels, scores, raw_labels def update_fallback_detection(ctx, pi_rgba, fallback_box, RTDETR_PROCESSOR, RTDETR_MODEL, DEVICE, RTDETR_CONF, final_boxes, final_labels, final_scores, final_kws, final_raws, final_mods, dd_log): try: if not (fallback_box and isinstance(fallback_box, list) and len(fallback_box) == 4): return final_boxes, final_labels, final_scores, final_kws, final_raws, final_mods, dd_log sub_ = pi_rgba.crop(( fallback_box[0], fallback_box[1], fallback_box[2], fallback_box[3] )) sub_ = sub_.convert("RGB") subW = sub_.width subH = sub_.height rtdetr_inputs = RTDETR_PROCESSOR(images=sub_, return_tensors="pt").to(DEVICE) with torch.no_grad(): rtdetr_outputs = RTDETR_MODEL(**rtdetr_inputs) rtdetr_results = RTDETR_PROCESSOR.post_process_object_detection( rtdetr_outputs, target_sizes=torch.tensor([[subH, subW]]).to(DEVICE), threshold=RTDETR_CONF ) rtdetr_clothing_labels = get_rtdetr_clothing_labels() found_fb_box, found_fb_score, _ = process_rtdetr_results( rtdetr_results, RTDETR_MODEL, rtdetr_clothing_labels, RTDETR_CONF ) if found_fb_box: fx1 = fallback_box[0] + found_fb_box[0] fy1 = fallback_box[1] + found_fb_box[1] fx2 = fallback_box[0] + found_fb_box[2] fy2 = fallback_box[1] + found_fb_box[3] found_fb_box = [fx1, fy1, fx2, fy2] final_boxes.append(found_fb_box) final_labels.append(90001) final_scores.append(round(found_fb_score, 2)) final_kws.append(ctx.product_type) final_raws.append("fallback_label") final_mods.append("rtdetr_model") dd_log[ctx.product_type].append({ "box": found_fb_box, "score": found_fb_score, "raw_label": "fallback_label", "model": "rtdetr_model" }) else: final_boxes.append(fallback_box) final_labels.append(90000) final_scores.append(0.0) final_kws.append(ctx.product_type) final_raws.append("fallback_label") final_mods.append("fallback") dd_log[ctx.product_type].append({ "box": fallback_box, "score": 0.0, "raw_label": "fallback_label", "model": "fallback" }) return final_boxes, final_labels, final_scores, final_kws, final_raws, final_mods, dd_log except Exception as e: logging.log(LOG_LEVEL_MAP["WARNING"], f"{EMOJI_MAP['WARNING']} Fallback detection error: {e}") final_boxes.append(fallback_box) final_labels.append(90000) final_scores.append(0.0) final_kws.append(ctx.product_type) final_raws.append("fallback_label") final_mods.append("fallback_error") dd_log[ctx.product_type].append({ "box": fallback_box, "score": 0.0, "raw_label": "fallback_label", "model": "fallback_error" }) return final_boxes, final_labels, final_scores, final_kws, final_raws, final_mods, dd_log