# ---------------------------------------------------------------------- # IMPORTS # ---------------------------------------------------------------------- import spaces # Simple GPU function to ensure Zero GPU detection @spaces.GPU def gpu_available(): import torch return torch.cuda.is_available() import os import sys import json import time import logging import traceback import subprocess from datetime import datetime from typing import List, Dict, Optional, Union from contextlib import asynccontextmanager import torch import uvicorn import threading import requests from fastapi import FastAPI, HTTPException, Request from fastapi.responses import JSONResponse, HTMLResponse from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, Field # ---------------------------------------------------------------------- # PATH SETUP # ---------------------------------------------------------------------- script_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, script_dir) # ---------------------------------------------------------------------- # LOCAL IMPORTS # ---------------------------------------------------------------------- from src.utils import ( ProcessingContext, ProcessingResponse, ProcessedImage, setup_logging, get_system_info, cleanup_memory, custom_dumps, LOG_LEVEL_MAP, EMOJI_MAP ) from src.models.model_loader import ( ensure_models_loaded, check_hardware_environment, MODELS_LOADED, LOAD_ERROR, DEVICE ) from src.pipeline import run_functions_in_sequence, PIPELINE_STEPS # ---------------------------------------------------------------------- # CONFIGURATION # ---------------------------------------------------------------------- from src.config import ( API_TITLE, API_VERSION, API_DESCRIPTION, API_HOST, API_PORT, GPU_DURATION_LONG, STATUS_SUCCESS, STATUS_ERROR, STATUS_PROCESSED, STATUS_NOT_PROCESSED, ERROR_NO_VALID_URLS, HTTP_OK, HTTP_BAD_REQUEST, HTTP_INTERNAL_SERVER_ERROR ) # ---------------------------------------------------------------------- # IMPORT TEST CONFIGURATION # ---------------------------------------------------------------------- try: from tests.config import RUN_TESTS except ImportError: try: sys.path.insert(0, os.path.join(script_dir, 'tests')) from config import RUN_TESTS except ImportError: RUN_TESTS = False print("Warning: Could not import RUN_TESTS from tests.config, defaulting to False") # ---------------------------------------------------------------------- # PYDANTIC MODELS # ---------------------------------------------------------------------- class ImageRequest(BaseModel): urls: Union[str, List[str]] = Field(..., description="Image URL(s)") product_type: str = Field("General", description="Product type") options: Optional[Dict] = Field(default_factory=dict, description="Processing options") class ShopifyWebhook(BaseModel): data: List = Field(..., description="Shopify webhook data") class HealthResponse(BaseModel): status: str timestamp: float device: str models_loaded: bool gpu_available: bool = False system_info: Dict # ---------------------------------------------------------------------- # LIFESPAN MANAGEMENT # ---------------------------------------------------------------------- @asynccontextmanager async def lifespan(app: FastAPI): setup_logging() logging.info(f"{EMOJI_MAP['INFO']} Starting {API_TITLE} v{API_VERSION}") check_hardware_environment() # Load models FIRST try: ensure_models_loaded() if os.getenv("SPACE_ID"): logging.info(f"{EMOJI_MAP['INFO']} Zero GPU environment - models will be loaded on first request") else: if MODELS_LOADED: logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded successfully") else: logging.warning(f"{EMOJI_MAP['WARNING']} Models not fully loaded") # Run GPU initialization for Spaces if os.getenv("SPACE_ID"): try: init_gpu() logging.info(f"{EMOJI_MAP['SUCCESS']} GPU initialization completed") except Exception as e: error_msg = str(e) if "GPU task aborted" in error_msg: logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization aborted (Zero GPU not ready yet) - this is normal during startup") logging.info("GPU will be initialized on first request") else: logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization failed: {error_msg}") except Exception as e: logging.error(f"{EMOJI_MAP['ERROR']} Failed to load models: {str(e)}") # Now run tests after models are loaded # Skip tests in Zero GPU if SKIP_STARTUP_TEST is set skip_startup_test = os.getenv("SKIP_STARTUP_TEST", "false").lower() == "true" if RUN_TESTS and os.environ.get("IN_PYTEST") != "true" and not skip_startup_test: logging.info(f"{EMOJI_MAP['INFO']} Running tests at startup...") # Run a simple test that calls the endpoint after server starts def run_endpoint_test(): logging.info(f"{EMOJI_MAP['INFO']} Starting endpoint test with RUN_TESTS={RUN_TESTS}") # Configuration for retries - increased for Zero GPU warming up max_retries = 5 retry_delay = 60 # seconds - increased from 30 initial_delay = 45 # seconds - increased from 30 # Test payload payload = { "data": [ [{"url": "https://cdn.shopify.com/s/files/1/0505/0928/3527/files/hugging_face_test_image_shirt_product_type.jpg"}], "Shirt" ] } # In Zero GPU environments, wait longer and handle GPU task abort gracefully if os.getenv("SPACE_ID"): logging.info(f"{EMOJI_MAP['INFO']} Zero GPU environment detected - waiting {initial_delay}s for GPU to warm up...") time.sleep(initial_delay) # Initial wait for Zero GPU environment to be ready logging.info(f"{EMOJI_MAP['INFO']} Running full processing test with enhanced retry logic (max {max_retries} attempts)") for retry in range(max_retries): try: logging.info(f"{EMOJI_MAP['INFO']} Testing /api/rb_and_crop endpoint (attempt {retry + 1}/{max_retries})...") response = requests.post( "http://localhost:7860/api/rb_and_crop", json=payload, timeout=180 # Longer timeout for Zero GPU ) if response.status_code == 200: data = response.json() if "processed_images" in data and data["processed_images"]: img = data["processed_images"][0] img_status = img.get('status') if img_status == STATUS_PROCESSED: logging.info(f"{EMOJI_MAP['SUCCESS']} Test passed! Image status: {img_status}") if img.get('base64_image'): logging.info(f"{EMOJI_MAP['SUCCESS']} Image processed and base64 encoded successfully") logging.info(f"{EMOJI_MAP['SUCCESS']} Full image processing test completed successfully") break # Success, exit retry loop elif img_status == STATUS_ERROR: error_detail = img.get('error', 'Unknown error') if "GPU task aborted" in error_detail or "GPU resources temporarily unavailable" in error_detail: logging.warning(f"{EMOJI_MAP['WARNING']} GPU task aborted during processing (attempt {retry + 1}/{max_retries})") logging.info(f"{EMOJI_MAP['INFO']} Zero GPU is warming up - this is expected during startup") if retry < max_retries - 1: logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s for GPU to stabilize...") time.sleep(retry_delay) continue else: logging.error(f"{EMOJI_MAP['ERROR']} Processing error: {error_detail}") else: logging.warning(f"{EMOJI_MAP['WARNING']} Unexpected image status: {img_status}") else: logging.warning(f"{EMOJI_MAP['WARNING']} Test returned no images") elif response.status_code == 503: # GPU resources temporarily unavailable logging.warning(f"{EMOJI_MAP['WARNING']} GPU resources unavailable (503), will retry...") if retry < max_retries - 1: logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s for GPU to become available...") time.sleep(retry_delay) continue elif response.status_code == 500: # Check if it's a GPU abort error try: error_data = response.json() error_detail = error_data.get('error', '') if "GPU task aborted" in error_detail or "GPU resources temporarily unavailable" in error_detail: logging.warning(f"{EMOJI_MAP['WARNING']} GPU task aborted (500): {error_detail}") if retry < max_retries - 1: logging.info(f"{EMOJI_MAP['INFO']} Zero GPU is still warming up. Waiting {retry_delay}s before retry...") time.sleep(retry_delay) continue else: logging.error(f"{EMOJI_MAP['ERROR']} Server error (500): {error_detail}") except: logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status 500: {response.text[:200]}") else: logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status {response.status_code}") if response.text: try: error_data = response.json() logging.error(f"Error details: {error_data.get('error', 'Unknown error')}") except: logging.error(f"Response: {response.text[:200]}") except requests.exceptions.Timeout: logging.warning(f"{EMOJI_MAP['WARNING']} Request timeout on attempt {retry + 1} - GPU might be initializing") if retry < max_retries - 1: logging.info(f"{EMOJI_MAP['INFO']} Waiting {retry_delay}s before retry...") time.sleep(retry_delay) continue except Exception as e: error_msg = str(e) if "GPU task aborted" in error_msg or "503" in error_msg or "Connection refused" in error_msg: logging.warning(f"{EMOJI_MAP['WARNING']} Connection/GPU error on attempt {retry + 1}: {error_msg}") if retry < max_retries - 1: logging.info(f"{EMOJI_MAP['INFO']} Zero GPU warming up. Waiting {retry_delay}s before retry...") time.sleep(retry_delay) continue else: logging.error(f"{EMOJI_MAP['ERROR']} Test error: {error_msg}") if retry < max_retries - 1: logging.info(f"{EMOJI_MAP['INFO']} Will retry after {retry_delay}s...") time.sleep(retry_delay) continue # Final health check only runs if we exhausted all retries without success # The 'break' statement above ensures we only reach here if test failed if retry == max_retries - 1: logging.warning(f"{EMOJI_MAP['WARNING']} Full test failed after {max_retries} attempts") logging.info(f"{EMOJI_MAP['INFO']} This is normal for Zero GPU during startup - the GPU needs time to warm up") try: response = requests.get("http://localhost:7860/health", timeout=10) if response.status_code == 200: data = response.json() logging.info(f"{EMOJI_MAP['SUCCESS']} Health check passed - service is running and ready") logging.info(f"Device: {data.get('device')}, Models loaded: {data.get('models_loaded')}") logging.info(f"{EMOJI_MAP['INFO']} The GPU will be fully initialized on the first real request") else: logging.warning(f"{EMOJI_MAP['WARNING']} Health check returned status {response.status_code}") except Exception as e: logging.warning(f"{EMOJI_MAP['WARNING']} Health check failed: {str(e)}") logging.info(f"{EMOJI_MAP['INFO']} Service is available and will handle requests normally once GPU warms up") else: # Non-Zero GPU environment - run full test after shorter delay time.sleep(10) # Wait for server to fully start try: logging.info(f"{EMOJI_MAP['INFO']} Testing /api/rb_and_crop endpoint...") # Normal timeout for non-Zero GPU environments response = requests.post( "http://localhost:7860/api/rb_and_crop", json=payload, timeout=120 ) if response.status_code == 200: data = response.json() if "processed_images" in data and data["processed_images"]: img = data["processed_images"][0] img_status = img.get('status') if img_status == STATUS_PROCESSED: logging.info(f"{EMOJI_MAP['SUCCESS']} Test passed! Image status: {img_status}") if img.get('base64_image'): logging.info(f"{EMOJI_MAP['SUCCESS']} Image processed and base64 encoded successfully") elif img_status == STATUS_ERROR: logging.error(f"{EMOJI_MAP['ERROR']} Processing error: {img.get('error', 'Unknown error')}") else: logging.warning(f"{EMOJI_MAP['WARNING']} Unexpected image status: {img_status}") else: logging.warning(f"{EMOJI_MAP['WARNING']} Test returned no images") else: logging.error(f"{EMOJI_MAP['ERROR']} Test failed with status {response.status_code}") if response.text: try: error_data = response.json() logging.error(f"Error details: {error_data.get('error', 'Unknown error')}") except: logging.error(f"Response: {response.text[:200]}") except Exception as e: logging.error(f"{EMOJI_MAP['ERROR']} Test error: {str(e)}") # Run test in background thread import threading test_thread = threading.Thread(target=run_endpoint_test, daemon=True) test_thread.start() yield logging.info(f"{EMOJI_MAP['INFO']} API shutdown initiated") cleanup_memory() # ---------------------------------------------------------------------- # FASTAPI APP # ---------------------------------------------------------------------- app = FastAPI( title=API_TITLE, version=API_VERSION, description=API_DESCRIPTION, docs_url="/api/docs", redoc_url="/api/redoc", lifespan=lifespan ) # ---------------------------------------------------------------------- # MIDDLEWARE # ---------------------------------------------------------------------- app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # ---------------------------------------------------------------------- # GPU INITIALIZATION # ---------------------------------------------------------------------- @spaces.GPU(duration=GPU_DURATION_LONG) def init_gpu(): """Initialize GPU for Spaces environment""" try: logging.info(f"{EMOJI_MAP['INFO']} Initializing GPU...") if torch.cuda.is_available(): torch.cuda.empty_cache() try: torch.cuda.ipc_collect() except Exception as e: logging.warning(f"IPC collect failed, continuing anyway: {e}") # Test GPU availability test_tensor = torch.tensor([1.0]).cuda() del test_tensor logging.info(f"{EMOJI_MAP['SUCCESS']} GPU is available and working") else: logging.warning(f"{EMOJI_MAP['WARNING']} CUDA not available in GPU context") return True except Exception as e: error_msg = str(e) if "GPU task aborted" in error_msg: logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization aborted - Zero GPU not ready") else: logging.error(f"{EMOJI_MAP['ERROR']} GPU initialization error: {error_msg}") raise # ---------------------------------------------------------------------- # HELPER FUNCTIONS # ---------------------------------------------------------------------- def _process_images_impl(urls: Union[str, List[str]], product_type: str) -> Dict: start_time = time.time() if isinstance(urls, str): url_list = [url.strip() for url in urls.split(",") if url.strip()] else: url_list = urls if not url_list: raise HTTPException(status_code=HTTP_BAD_REQUEST, detail=ERROR_NO_VALID_URLS) # Import build_keywords function to generate keywords based on product type from src.processing.bounding_box.bounding_box import build_keywords # Generate keywords for this product type keywords = build_keywords(product_type) contexts = [ProcessingContext(url=url, product_type=product_type, keywords=keywords) for url in url_list] batch_logs = [] try: ensure_models_loaded() run_functions_in_sequence(contexts, PIPELINE_STEPS) processed_images = [] for ctx in contexts: if hasattr(ctx, 'error') and ctx.error: processed_images.append({ "url": ctx.url, "status": STATUS_ERROR, "error": str(ctx.error) }) elif hasattr(ctx, 'skip_processing') and ctx.skip_processing: # Check if there's a specific error message error_msg = "Processing skipped" if hasattr(ctx, 'processing_error'): error_msg = str(ctx.processing_error) processed_images.append({ "url": ctx.url, "status": STATUS_ERROR, "error": error_msg }) elif hasattr(ctx, 'result_image') and ctx.result_image: processed_images.append({ "url": ctx.url, "status": STATUS_PROCESSED, "base64_image": ctx.result_image, "metadata": ctx.metadata, "processing_logs": ctx.processing_logs }) else: processed_images.append({ "url": ctx.url, "status": STATUS_NOT_PROCESSED }) total_time = time.time() - start_time return { "status": "success", "processed_images": processed_images, "total_time": total_time, "batch_logs": batch_logs, "system_info": get_system_info() } except Exception as e: logging.error(f"{EMOJI_MAP['ERROR']} Processing failed: {str(e)}") raise HTTPException(status_code=500, detail=str(e)) @spaces.GPU(duration=GPU_DURATION_LONG) def process_images_gpu(urls: Union[str, List[str]], product_type: str) -> Dict: """GPU-accelerated image processing for Spaces""" try: # Force model loading in GPU context for Zero GPU environment if not MODELS_LOADED: logging.info(f"{EMOJI_MAP['INFO']} Loading models in GPU context...") from src.models.model_loader import load_models try: load_models() logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded in GPU context") except Exception as e: logging.error(f"{EMOJI_MAP['ERROR']} Failed to load models in GPU context: {str(e)}") # Continue anyway - some steps might work without all models # Move models to GPU within the GPU context logging.info(f"{EMOJI_MAP['INFO']} Moving models to GPU...") from src.models.model_loader import move_models_to_gpu try: move_models_to_gpu() logging.info(f"{EMOJI_MAP['SUCCESS']} Models moved to GPU") except Exception as e: logging.warning(f"{EMOJI_MAP['WARNING']} Failed to move some models to GPU: {str(e)}") # Continue anyway - will run on CPU but slower return _process_images_impl(urls, product_type) except Exception as e: error_msg = str(e) if "GPU task aborted" in error_msg: logging.error(f"{EMOJI_MAP['ERROR']} GPU task was aborted - Zero GPU might be overloaded or warming up") logging.info(f"{EMOJI_MAP['INFO']} This often happens during startup - the GPU will be ready soon") raise HTTPException( status_code=503, detail="GPU resources temporarily unavailable. Zero GPU is warming up. Please try again in 30-60 seconds." ) else: raise def process_images(urls: Union[str, List[str]], product_type: str) -> Dict: """Process images with automatic GPU/CPU selection""" if os.getenv("SPACE_ID"): return process_images_gpu(urls, product_type) else: return _process_images_impl(urls, product_type) # ---------------------------------------------------------------------- # ENDPOINTS # ---------------------------------------------------------------------- @app.get("/", response_class=HTMLResponse) async def root(): return f"""
Visit /api/docs for API documentation
""" @app.get("/health", response_model=HealthResponse) async def health(): # Check GPU availability gpu_available = False gpu_name = None try: if torch.cuda.is_available(): gpu_available = True gpu_name = torch.cuda.get_device_name(0) except: pass system_info = get_system_info() system_info["gpu_available"] = gpu_available system_info["gpu_name"] = gpu_name system_info["space_id"] = os.getenv("SPACE_ID", None) system_info["zero_gpu"] = bool(os.getenv("SPACE_ID")) return HealthResponse( status="healthy", timestamp=time.time(), device=DEVICE, models_loaded=MODELS_LOADED, gpu_available=gpu_available, system_info=system_info ) @app.post("/api/wake") async def wake_up(): """Lightweight endpoint for waking up the space""" logging.info(f"{EMOJI_MAP['INFO']} Wake-up request received") # Try to initialize GPU if in Zero GPU environment if os.getenv("SPACE_ID"): try: # This will trigger GPU allocation in Zero GPU spaces init_gpu() logging.info(f"{EMOJI_MAP['SUCCESS']} GPU initialized for wake-up") except Exception as e: logging.warning(f"{EMOJI_MAP['WARNING']} GPU initialization during wake-up: {str(e)}") # Ensure models are loaded try: ensure_models_loaded() logging.info(f"{EMOJI_MAP['SUCCESS']} Models loaded during wake-up") except Exception as e: logging.warning(f"{EMOJI_MAP['WARNING']} Model loading during wake-up: {str(e)}") return { "status": "awake", "timestamp": time.time(), "device": DEVICE, "models_loaded": MODELS_LOADED, "message": "Service is awake and ready" } @app.get("/api/quota-info") async def quota_info(): """Provide information about GPU quota (informational only - actual quota is managed by HF)""" return { "status": "info", "quota_management": "Hugging Face ZeroGPU Infrastructure", "quota_details": { "total_seconds": 300, "refill_rate": "1 GPU second per 30 real seconds", "half_life": "2 hours", "full_recovery_time": "2.5 hours (9000 seconds)" }, "recovery_suggestions": { "light_usage": { "gpu_seconds": 30, "wait_minutes": 15, "suitable_for": "1-2 images" }, "moderate_usage": { "gpu_seconds": 60, "wait_minutes": 30, "suitable_for": "2-4 images" }, "heavy_usage": { "gpu_seconds": 120, "wait_minutes": 60, "suitable_for": "4-8 images" }, "full_quota": { "gpu_seconds": 300, "wait_minutes": 150, "suitable_for": "10+ images" } }, "note": "This endpoint provides information only. Actual quota tracking is done by Hugging Face infrastructure.", "timestamp": time.time() } @app.post("/api/predict", response_model=ProcessingResponse) async def predict(request: ImageRequest): result = process_images(request.urls, request.product_type) return ProcessingResponse( status=result["status"], results=[ ProcessedImage( image_url=img["url"], status=img["status"], base64=img.get("base64_image", ""), format="png", type="processed", metadata=img.get("metadata", {}), error=img.get("error") ) for img in result["processed_images"] ], processed_count=len([img for img in result["processed_images"] if img["status"] == STATUS_PROCESSED]), total_time=result["total_time"], system_info=result["system_info"] ) @app.post("/api/rb_and_crop") async def shopify_webhook(webhook: ShopifyWebhook): if not webhook.data or len(webhook.data) < 2: raise HTTPException(status_code=HTTP_BAD_REQUEST, detail="Invalid webhook data") images_info = webhook.data[0] product_type = webhook.data[1] if len(webhook.data) > 1 else "General" if not isinstance(images_info, list): raise HTTPException(status_code=HTTP_BAD_REQUEST, detail="Invalid images data") urls = [] for img_dict in images_info: if isinstance(img_dict, dict) and "url" in img_dict: urls.append(img_dict["url"]) if not urls: raise HTTPException(status_code=HTTP_BAD_REQUEST, detail=ERROR_NO_VALID_URLS) # Special handling for wake-up requests (single placeholder image with "Test" product type) if len(urls) == 1 and product_type == "Test" and "placeholder.com" in urls[0]: logging.info(f"{EMOJI_MAP['INFO']} Wake-up request detected, returning minimal response") return { "status": STATUS_SUCCESS, "processed_images": [{ "url": urls[0], "status": STATUS_PROCESSED, "base64_image": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChwGA60e6kgAAAABJRU5ErkJggg==", # 1x1 transparent PNG "color": "#ffffff", "image_type": "wake_up", "artifacts": "false" }] } result = process_images(urls, product_type) return { "status": result["status"], "processed_images": [ { "url": img["url"], "status": img["status"], "base64_image": img.get("base64_image", ""), "color": "#ffffff", "image_type": "remove_background", "artifacts": "false" } for img in result["processed_images"] ] } @app.post("/api/batch") async def batch_process(requests: List[ImageRequest]): results = [] for req in requests: try: result = process_images(req.urls, req.product_type) results.append(result) except Exception as e: results.append({ "status": "error", "error": str(e), "urls": req.urls }) return { "status": "success", "batch_results": results, "total_requests": len(requests) } # ---------------------------------------------------------------------- # ERROR HANDLERS # ---------------------------------------------------------------------- @app.exception_handler(HTTPException) async def http_exception_handler(request: Request, exc: HTTPException): return JSONResponse( status_code=exc.status_code, content={ "status": "error", "error": exc.detail, "timestamp": time.time() } ) @app.exception_handler(Exception) async def general_exception_handler(request: Request, exc: Exception): # Determine error type and prepare detailed response error_type = "UNKNOWN_ERROR" error_message = str(exc) error_details = {} # Check for specific error types if ("GPU" in error_message and ("limit" in error_message or "quota" in error_message)) or "ZeroGPU quota exceeded" in error_message: # For GPU quota errors, log a simple notification without traceback logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded: Space app has reached its GPU limit") error_type = "GPU_LIMIT_ERROR" error_details["gpu_error"] = True # Provide quota recovery information error_details["quota_info"] = { "message": "GPU quota exceeded. ZeroGPU quota refills at 1 GPU second per 30 real seconds.", "recommended_wait_times": { "minimal": 900, # 15 minutes for ~30s GPU quota "moderate": 1800, # 30 minutes for ~60s GPU quota "full": 5400 # 90 minutes for ~180s GPU quota }, "note": "Quota is managed by Hugging Face infrastructure, not this application." } error_details["retry_after"] = 900 # Suggest 15 minutes minimum elif "GPU task aborted" in error_message: logging.error(f"{EMOJI_MAP['ERROR']} GPU task aborted") error_type = "GPU_TASK_ABORTED" error_details["gpu_error"] = True elif "gradio.exceptions.Error" in str(type(exc)): error_type = "GRADIO_ERROR" error_details["gradio_error"] = True # For Gradio errors related to GPU limits, don't log traceback if "GPU limit" in error_message: logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota exceeded: Space app has reached its GPU limit") else: logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}") logging.error(traceback.format_exc()) elif isinstance(exc, ValueError): error_type = "VALIDATION_ERROR" logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}") logging.error(traceback.format_exc()) elif isinstance(exc, TimeoutError): error_type = "TIMEOUT_ERROR" logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}") logging.error(traceback.format_exc()) else: # For other errors, log with traceback logging.error(f"{EMOJI_MAP['ERROR']} Unhandled exception: {str(exc)}") logging.error(traceback.format_exc()) # Prepare response with detailed error information error_response = { "status": "error", "error_type": error_type, "error_message": error_message, "error_details": error_details, "timestamp": time.time(), "request_path": str(request.url.path), "request_method": request.method } # Only include traceback for non-GPU quota errors if error_type not in ["GPU_LIMIT_ERROR", "GPU_TASK_ABORTED"] and not ("GPU limit" in error_message) and not ("ZeroGPU quota exceeded" in error_message): tb_lines = traceback.format_exception(type(exc), exc, exc.__traceback__) error_response["traceback"] = ''.join(tb_lines) # For GPU quota errors, log a simple summary instead of full response if error_type == "GPU_LIMIT_ERROR": logging.warning(f"{EMOJI_MAP['WARNING']} GPU quota limit response sent to client with retry_after: {error_details.get('retry_after', 900)}s") else: # Log the full error details for other errors logging.error(f"{EMOJI_MAP['ERROR']} Error response: {json.dumps(error_response, indent=2)}") return JSONResponse( status_code=500, content=error_response ) # ---------------------------------------------------------------------- # MAIN # ---------------------------------------------------------------------- if __name__ == "__main__": # Configure uvicorn logging to avoid duplicates log_config = uvicorn.config.LOGGING_CONFIG log_config["formatters"]["default"]["fmt"] = "%(asctime)s [%(levelname)s] %(name)s: %(message)s" log_config["formatters"]["access"]["fmt"] = '%(asctime)s [%(levelname)s] %(name)s: %(client_addr)s - "%(request_line)s" %(status_code)s' # Disable duplicate logging from uvicorn log_config["loggers"]["uvicorn"]["propagate"] = False log_config["loggers"]["uvicorn.access"]["propagate"] = False uvicorn.run( app, host=API_HOST, port=API_PORT, log_level="info", log_config=log_config )