Spaces:
Running
Running
File size: 19,106 Bytes
aeb6d58 cc8a66b f276a79 6d540bf 9702a67 6d540bf ccde434 aac9ef0 1158e1e 9210847 fb1f20c 9702a67 a4ab56b aeb6d58 c89c654 d7f014d aeb6d58 c89c654 aeb6d58 c89c654 aeb6d58 c89c654 d7f014d aeb6d58 c89c654 aeb6d58 c89c654 d7f014d aeb6d58 55fafcc aeb6d58 c89c654 aeb6d58 c89c654 aeb6d58 2b58715 c89c654 5cd2be1 c89c654 9702a67 c89c654 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 2b58715 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 234a449 9702a67 234a449 9702a67 234a449 9702a67 234a449 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 fb1f20c 9702a67 c89c654 89688fa c89c654 89688fa c89c654 89688fa c89c654 89688fa aeb6d58 aac9ef0 aeb6d58 aac9ef0 ccde434 aac9ef0 ccde434 aac9ef0 ccde434 aeb6d58 c89c654 aeb6d58 c89c654 aeb6d58 f276a79 c89c654 f276a79 fb1f20c 55fafcc fb1f20c 54a0a2e fb1f20c 55fafcc fb1f20c 55fafcc fb1f20c 848ffbd f276a79 6e57415 c89c654 6e57415 c89c654 8aa4f17 da45582 8aa4f17 aeb6d58 c89c654 55fafcc 9702a67 fb1f20c c89c654 cc8a66b fb1f20c cc8a66b fb1f20c c89c654 6e57415 55fafcc 9702a67 6e57415 aeb6d58 8aa4f17 9210847 2b58715 fb1f20c aeb6d58 234a449 acb5890 fb1f20c 9702a67 aeb6d58 9702a67 f276a79 8aa4f17 f276a79 aeb6d58 55fafcc aeb6d58 c89c654 aeb6d58 c89c654 aeb6d58 9702a67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import pandas as pd
import gradio as gr
import os
import re
import requests
from dotenv import load_dotenv
from matplotlib.colors import LinearSegmentedColormap
import plotly.express as px
import plotly.graph_objects as go
# from sklearn.linear_model import LinearRegression
import numpy as np
from huggingface_hub import HfApi
from huggingface_hub.hf_api import HTTPError
from huggingface_hub.utils import GatedRepoError
from gradio_rangeslider import RangeSlider
import datetime
from gradio.themes.utils.colors import slate
load_dotenv()
webhook_url = os.environ.get("WEBHOOK_URL")
file_name_list = [
"14b",
"9b",
"7b",
"3b",
"1b5",
"other",
]
sheet_name_list = [
"cr",
"bpc",
"bpb",
]
metric_list = [
"Compression Rate (%)",
"Bits Per Character (BPC)",
"Bits Per Byte (BPB)",
]
model_size_list = [
"~14B",
"~9B",
"~7B",
"~3B",
"~1.5B",
"Other",
]
metric_to_sheet = {
"Compression Rate (%)": "cr",
"Bits Per Character (BPC)": "bpc",
"Bits Per Byte (BPB)": "bpb",
}
model_size_to_file_name = {
"~14B": "14b",
"~9B": "9b",
"~7B": "7b",
"~3B": "3b",
"~1.5B": "1b5",
"Other": "other",
}
def read_about_md():
with open('about.md', 'r', encoding='utf-8') as f:
return f.read()
def rename_columns(df):
df.columns = [col.rsplit("_", maxsplit=1)[0] for col in df.columns]
return df
def get_folders_matching_format(directory):
pattern = re.compile(r"^\d{4}-\d{2}$")
folders = []
if not os.path.exists(directory):
return folders
for item in os.listdir(directory):
full_path = os.path.join(directory, item)
if os.path.isdir(full_path) and pattern.match(item):
folders.append(full_path)
return folders
def get_unique_column_names(data=None):
return [
"ao3_\u200benglish",
"bbc_\u200bnews",
"wikipedia_\u200benglish",
"arxiv_\u200bcomputer_\u200bscience",
"arxiv_\u200bphysics",
"github_\u200bcpp",
"github_\u200bpython",
]
def color_cell(value):
return "background-color: #fffdd0" if pd.notna(value) else "default"
# def color_cell_themed(value):
# return "background-color: rgba(255, 253, 208, 1.0)" if pd.notna(value) else "default"
# --- 核心改动点 1: 修改 update_table 函数 ---
# 添加 request: gr.Request = None 参数来接收主题模式信息
# 默认值为 None 是为了处理初始加载
def update_table(period: str, models_size: list, metric: str, visible_columns: list, color_columns: list, size_range: list, midpoint: float = 0.5, sort_by: str = "Average (lower=better)", ascending: bool = True, request: gr.Request = None):
# 打印日志并检查当前模式
is_dark_mode = request.is_dark if request else False
print(f"Updating - time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}, period: {period}, models: {models_size}, metric: {metric}, visible_columns: {visible_columns}, color_columns: {color_columns}, size_range: {size_range}, sort_by: {sort_by}, ascending: {ascending}, is_dark: {is_dark_mode}\n")
if not models_size:
return "No data available for the selected models and period."
target_period_data = all_data[period]
target_file_name = [model_size_to_file_name[model] for model in models_size]
sheet_name = metric_to_sheet[metric]
combined_data = pd.concat([df.dropna(axis=1, how="all") for df in [target_period_data[file_name][sheet_name] for file_name in target_file_name]], axis=0)
if len(combined_data) == 0:
return "No data available for the selected models and period."
combined_data = combined_data[combined_data["Parameters Count (B)"].between(size_range[0], size_range[1])]
combined_data.reset_index(drop=True, inplace=True)
if len(combined_data) == 0:
return "No data available for the selected models and period."
combined_data["Name"] = combined_data["Name"].apply(lambda x: x.replace(".pth", ""))
ordered_columns = get_unique_column_names()
relevant_columns = [col for col in ordered_columns if col in visible_columns and col not in ["Name", "Parameters Count (B)", "Average (The lower the better)"]]
if len(combined_data) > 0 and relevant_columns:
combined_data["Average (The lower the better)"] = round(combined_data[relevant_columns].mean(axis=1), 3)
combined_data = combined_data.rename(columns={"Parameters Count (B)": "Params (B)", "Average (The lower the better)": "Average (lower=better)"})
sorted_data = combined_data.sort_values(by=sort_by, ascending=ascending)
visible_columns_final = ["Name", "Params (B)", "Average (lower=better)"] + relevant_columns
filtered_data = sorted_data[visible_columns_final]
filtered_data.columns = [col.replace("_", " ") for col in filtered_data.columns]
formatter = {col: "{:.3f}" for col in filtered_data.columns if filtered_data[col].dtype in ["float64", "float32"]}
# --- 核心改动点 2: 根据主题模式选择不同的配色方案 ---
if is_dark_mode:
# 夜间模式配色 (绿 -> 深灰 -> 红)
colors = ["#2ca02c", "#2b2b2b", "#d62728"]
else:
# 日间模式配色 (绿 -> 白 -> 红)
colors = ["#63be7b", "#ffffff", "#f8696b"]
vmin, vmax, vmid = {}, {}, {}
for column in filtered_data.columns:
if column in ["Name", "Params (B)"]: continue
col_values = filtered_data[column].dropna()
if len(col_values) > 1:
sorted_values = np.sort(col_values)
vmin[column] = sorted_values.min()
vmax[column] = sorted_values.max()
idx = int(len(sorted_values) * midpoint)
vmid[column] = sorted_values[idx]
# --- 核心改动点 3: 修改样式函数以包含固定的黑色字体 ---
def custom_background_gradient(series, cmap, vmin_val, vmax_val, vmid_val):
if len(series) == 0: return series
def normalize(x):
if pd.isna(x): return 0.5 # Neutral for NaN
if vmid_val == vmin_val and x <= vmid_val: return 0.0
if vmid_val == vmax_val and x >= vmid_val: return 1.0
if vmid_val == vmin_val or vmid_val == vmax_val: return 0.5
if x <= vmid_val:
return 0.5 * (x - vmin_val) / (vmid_val - vmin_val)
else:
return 0.5 + 0.5 * (x - vmid_val) / (vmax_val - vmid_val)
normed = series.apply(normalize)
cmap_colors = [cmap(x) for x in normed]
# 在返回的CSS中同时设置 background-color 和 color
return [
"background-color: rgba({}, {}, {}, {}); color: black;".format(*[int(255 * c) for c in color[:3]], color[3])
for color in cmap_colors
]
target_color_columns = []
if "Average" in color_columns: target_color_columns.append("Average (lower=better)")
if "Individual Tests" in color_columns: target_color_columns.extend([col for col in filtered_data.columns if col not in ["Name", "Params (B)", "Average (lower=better)"]])
def color_params_column_dynamic(value):
if not pd.notna(value):
return "default"
# 2. 根据 is_dark_mode 返回不同的颜色
if is_dark_mode:
# 为夜间模式选择一个柔和、不刺眼的暗金色
# 字体颜色也设置为浅色以保证对比度
return "background-color: #4b4936; color: #f0f0f0;"
else:
# 为日间模式使用明亮的奶油色,字体为黑色
return "background-color: #fffdd0; color: black;"
styler = filtered_data.style.format(formatter).map(color_params_column_dynamic, subset=["Params (B)"])
for column in target_color_columns:
if column in vmin:
custom_cmap = LinearSegmentedColormap.from_list("custom_cmap", colors)
styler = styler.apply(custom_background_gradient, cmap=custom_cmap, vmin_val=vmin[column], vmax_val=vmax[column], vmid_val=vmid[column], subset=[column])
styler = styler.hide(axis="index")
widths = [300, 150, 150, 100, 100, 100, 100, 100, 100, 100, 100]
table_styles = []
table_styles.append({"selector": "th", "props": [("background-color", "var(--background-fill-secondary)"), ("color", "var(--body-text-color)"), ("padding", "8px"), ("font-weight", "bold")]})
table_styles.append({"selector": "table", "props": [("border-collapse", "collapse"), ("border", f"1px solid var(--border-color-primary)")]})
for i, w in enumerate(widths):
table_styles.append({"selector": f"th.col{i}, td.col{i}", "props": [("min-width", f"{w}px"), ("max-width", f"{w}px"), ("text-align", "center"), ("border", f"1px solid var(--border-color-primary)")]})
styler = styler.set_table_styles(table_styles)
return styler.to_html()
def create_world_languages_gdp_chart():
languages = ["English", "Chinese", "Spanish", "Japanese", "German", "French", "Arabic", "Italian", "Portuguese", "Korean", "Other"]
shares = [27, 18, 8, 6, 5, 4, 3, 2, 2, 2, 23]
colors = ["#FF7F7F", "#FFA07A", "#FFDB58", "#90EE90", "#98FB98", "#87CEFA", "#B0C4DE", "#DDA0DD", "#D8BFD8", "#F0E68C", "#E0FFFF"]
fig = go.Figure(
data=[
go.Pie(
labels=languages,
values=shares,
hole=0.3,
marker=dict(colors=colors, line=dict(color="#FFFFFF", width=2)),
textinfo="label+percent",
textposition="outside",
insidetextorientation="radial",
textfont=dict(size=12),
)
]
)
fig.update_layout(
title={
"text": "World Languages by Share of Global GDP",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
"font": dict(size=20, color="black"),
},
showlegend=False,
width=700,
height=500,
margin=dict(t=80, b=20, l=20, r=20),
)
return fig
def check_model_exists(model_id):
api = HfApi()
try:
model_info = api.model_info(model_id)
return "Exists and is accessible"
except GatedRepoError:
return "Exists but is restricted"
except HTTPError as e:
if e.response.status_code == 404:
return "Does not exist"
else:
return "Error: " + str(e)
def submit_model(name):
if "Exists" not in check_model_exists(name):
return f"# ERROR: Model {name} does not exist on Hugging Face!"
try:
response = requests.post(webhook_url, json={"content": name})
if response.status_code == 200:
response_data = response.json()
if response_data.get("status") == "success":
return "# SUCCESS: We will check the model as soon as possible. Thank you for your submission!"
else:
return f"# ERROR: {response_data.get('message', 'Unknown error')}"
else:
return f"# ERROR: Failed to submit model {name}. Server returned status code {response.status_code}."
except requests.exceptions.HTTPError:
return "# ERROR: Network error while contacting queue. Please try again in a few minutes."
except Exception as e:
print(e)
return "ERROR: Unexpected error. Please try again later."
def create_scaling_plot(all_data, period):
selected_columns = ["Name", "Parameters Count (B)", "Average (The lower the better)"]
target_data = all_data[period]
new_df = pd.DataFrame()
for size in target_data.keys():
new_df = pd.concat([new_df, target_data[size]["cr"].loc[:, selected_columns].dropna(axis=1, how="all")], axis=0)
x_values = new_df["Parameters Count (B)"].astype(float).tolist()
y_values = new_df["Average (The lower the better)"].astype(float).tolist()
names = new_df["Name"].tolist()
x_min, x_max = np.log10(min(x_values)), np.log10(max(x_values))
y_min, y_max = np.log10(min(y_values)), np.log10(max(y_values))
x_dtick = (x_max - x_min) / 4
y_dtick = (y_max - y_min) / 4
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=x_values,
y=y_values,
mode="markers",
name="Models",
marker=dict(size=12, color="#39C5BB", opacity=0.8),
text=names,
customdata=list(zip(x_values, y_values)),
hovertemplate=(
"<b>%{text}</b><br>" + "Params: %{customdata[0]:.2f}B<br>" + "Compression Rate: %{customdata[1]:.2f}%<br>" + "<extra></extra>"
),
)
)
fig.update_layout(
title={"text": "Compression Rate Scaling Law", "x": 0.5, "xanchor": "center", "yanchor": "top"},
width=800,
height=600,
showlegend=True,
xaxis=dict(
title="Parameters (B)",
showgrid=True,
zeroline=False,
type="log",
dtick=x_dtick,
tickformat=".2f",
range=[x_min - 0.1, x_max + 0.1],
),
yaxis=dict(
title="Compression Rate (%)",
showgrid=True,
zeroline=False,
type="log",
dtick=y_dtick,
tickformat=".2f",
range=[y_min - 0.1, y_max + 0.1],
autorange="reversed",
),
)
return fig
def read_all_data(folder_name):
all_data = {}
time_list = []
for folder in get_folders_matching_format(folder_name):
folder_name = os.path.basename(folder)
time_list.append(folder_name)
if all_data.get(folder) is None:
all_data[folder_name] = {}
for file_name in file_name_list:
if all_data.get(file_name) is None:
all_data[folder_name][file_name] = {}
for sheet_name in sheet_name_list:
final_file_name = os.path.join(folder, file_name)
all_data[folder_name][file_name][sheet_name] = rename_columns(pd.read_excel(final_file_name + ".xlsx", sheet_name=sheet_name))
return all_data, time_list
all_data, time_list = read_all_data("data")
time_list.sort()
last_period = time_list[-1]
initial_fig = create_scaling_plot(all_data, last_period)
initial_metric = metric_list[0]
initial_columns = get_unique_column_names(all_data)
initial_colors = ["Average", "Individual Tests"]
initial_size_range = [0, 40]
# 初始调用 update_table 时,request 参数将为默认的 None
initial_data = update_table(last_period, model_size_list, initial_metric, initial_columns, initial_colors, initial_size_range)
css = """
.gradio-container {
max-width: 95% !important;
margin: 0 auto;
}
.tab-buttons button {
font-size: 1.3em;
}
.gr-dataframe th {
white-space: normal;
word-break: break-word;
}
table {
margin-left: auto !important;
margin-right: auto !important;
width: 100% !important;
}
"""
TITLE_HTML = '<h1 style="text-align:center"><span style="font-size:1.3em">🏆 LLM Compression Leaderboard</span></h1>'
SUBTITLE_HTML = "<h1 style='text-align:center'><span style='font-size:0.8em'>Welcome to Uncheatable Eval LLM Compression Leaderboard, where fancy fine-tuning and cheating won't work 🚫; only compute 💻, data 📊, and real innovation 🔥 can prevail!</span></h1>"
# theme = gr.themes.Default(primary_hue=slate, secondary_hue=slate)
theme = gr.themes.Default()
with gr.Blocks(theme=theme, css=css) as demo:
gr.HTML(TITLE_HTML)
gr.HTML(SUBTITLE_HTML)
with gr.Tabs() as tabs:
with gr.Tab("🏆 Leaderboard"):
with gr.Row():
with gr.Column():
period_selector = gr.Dropdown(label="Period", choices=time_list, value=last_period)
model_selector = gr.CheckboxGroup(label="Model Size", choices=model_size_list, value=model_size_list)
size_range_slider = RangeSlider(minimum=0, maximum=40, value=[0, 40], step=0.1, label="Model Size Range")
metric_selector = gr.Dropdown(label="Metric", choices=metric_list, value=initial_metric)
with gr.Column():
midpoint_slider = gr.Slider(minimum=0.1, maximum=0.9, value=0.5, step=0.01, label="Color Gradient Midpoint")
color_selector = gr.CheckboxGroup(label="Colored Columns", choices=["Average", "Individual Tests"], value=initial_colors)
colfilter = gr.CheckboxGroup(label="Data Source", choices=get_unique_column_names(all_data), value=initial_columns)
table = gr.HTML(initial_data)
# --- 核心改动点 4: 更新所有 .change() 事件,添加 gr.Request() ---
# 定义共享的输入列表,避免重复
shared_inputs = [period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider]
period_selector.change(update_table, inputs=shared_inputs, outputs=table)
model_selector.change(update_table, inputs=shared_inputs, outputs=table)
metric_selector.change(update_table, inputs=shared_inputs, outputs=table)
colfilter.change(update_table, inputs=shared_inputs, outputs=table)
color_selector.change(update_table, inputs=shared_inputs, outputs=table)
size_range_slider.change(update_table, inputs=shared_inputs, outputs=table)
midpoint_slider.change(update_table, inputs=shared_inputs, outputs=table)
with gr.Tab("🌍 MultiLang"):
gr.Markdown("## Coming soon...")
# world_languages_plot = gr.Plot(create_world_languages_gdp_chart())
with gr.Tab("📈 Scaling Law"):
period_selector_2 = gr.Dropdown(label="Period", choices=time_list, value=last_period)
def update_plot(period):
new_fig = create_scaling_plot(all_data, period)
return new_fig
plot = gr.Plot(initial_fig)
period_selector_2.change(update_plot, inputs=period_selector_2, outputs=plot)
with gr.Tab("ℹ️ About"):
gr.Markdown(read_about_md())
with gr.Tab("🚀 Submit"):
with gr.Group():
with gr.Row():
model_name = gr.Textbox(max_lines=1, placeholder="Enter model name...", show_label=False, scale=4)
submit = gr.Button("Submit", variant="primary", scale=0)
output = gr.Markdown("# Enter a public HF repo id, then hit Submit to add it to the evaluation queue.")
submit.click(fn=submit_model, inputs=model_name, outputs=output)
demo.launch(share=False) |