import pandas as pd import gradio as gr import os import re import requests from dotenv import load_dotenv from matplotlib.colors import LinearSegmentedColormap import plotly.express as px import plotly.graph_objects as go # from sklearn.linear_model import LinearRegression import numpy as np from huggingface_hub import HfApi from huggingface_hub.hf_api import HTTPError from huggingface_hub.utils import GatedRepoError from gradio_rangeslider import RangeSlider import datetime from gradio.themes.utils.colors import slate load_dotenv() webhook_url = os.environ.get("WEBHOOK_URL") file_name_list = [ "14b", "9b", "7b", "3b", "1b5", "other", ] sheet_name_list = [ "cr", "bpc", "bpb", ] metric_list = [ "Compression Rate (%)", "Bits Per Character (BPC)", "Bits Per Byte (BPB)", ] model_size_list = [ "~14B", "~9B", "~7B", "~3B", "~1.5B", "Other", ] metric_to_sheet = { "Compression Rate (%)": "cr", "Bits Per Character (BPC)": "bpc", "Bits Per Byte (BPB)": "bpb", } model_size_to_file_name = { "~14B": "14b", "~9B": "9b", "~7B": "7b", "~3B": "3b", "~1.5B": "1b5", "Other": "other", } def read_about_md(): with open('about.md', 'r', encoding='utf-8') as f: return f.read() def rename_columns(df): df.columns = [col.rsplit("_", maxsplit=1)[0] for col in df.columns] return df def get_folders_matching_format(directory): pattern = re.compile(r"^\d{4}-\d{2}$") folders = [] if not os.path.exists(directory): return folders for item in os.listdir(directory): full_path = os.path.join(directory, item) if os.path.isdir(full_path) and pattern.match(item): folders.append(full_path) return folders def get_unique_column_names(data=None): return [ "ao3_\u200benglish", "bbc_\u200bnews", "wikipedia_\u200benglish", "arxiv_\u200bcomputer_\u200bscience", "arxiv_\u200bphysics", "github_\u200bcpp", "github_\u200bpython", ] def color_cell(value): return "background-color: #fffdd0" if pd.notna(value) else "default" # def color_cell_themed(value): # return "background-color: rgba(255, 253, 208, 1.0)" if pd.notna(value) else "default" # --- 核心改动点 1: 修改 update_table 函数 --- # 添加 request: gr.Request = None 参数来接收主题模式信息 # 默认值为 None 是为了处理初始加载 def update_table(period: str, models_size: list, metric: str, visible_columns: list, color_columns: list, size_range: list, midpoint: float = 0.5, sort_by: str = "Average (lower=better)", ascending: bool = True, request: gr.Request = None): # 打印日志并检查当前模式 is_dark_mode = request.is_dark if request else False print(f"Updating - time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}, period: {period}, models: {models_size}, metric: {metric}, visible_columns: {visible_columns}, color_columns: {color_columns}, size_range: {size_range}, sort_by: {sort_by}, ascending: {ascending}, is_dark: {is_dark_mode}\n") if not models_size: return "No data available for the selected models and period." target_period_data = all_data[period] target_file_name = [model_size_to_file_name[model] for model in models_size] sheet_name = metric_to_sheet[metric] combined_data = pd.concat([df.dropna(axis=1, how="all") for df in [target_period_data[file_name][sheet_name] for file_name in target_file_name]], axis=0) if len(combined_data) == 0: return "No data available for the selected models and period." combined_data = combined_data[combined_data["Parameters Count (B)"].between(size_range[0], size_range[1])] combined_data.reset_index(drop=True, inplace=True) if len(combined_data) == 0: return "No data available for the selected models and period." combined_data["Name"] = combined_data["Name"].apply(lambda x: x.replace(".pth", "")) ordered_columns = get_unique_column_names() relevant_columns = [col for col in ordered_columns if col in visible_columns and col not in ["Name", "Parameters Count (B)", "Average (The lower the better)"]] if len(combined_data) > 0 and relevant_columns: combined_data["Average (The lower the better)"] = round(combined_data[relevant_columns].mean(axis=1), 3) combined_data = combined_data.rename(columns={"Parameters Count (B)": "Params (B)", "Average (The lower the better)": "Average (lower=better)"}) sorted_data = combined_data.sort_values(by=sort_by, ascending=ascending) visible_columns_final = ["Name", "Params (B)", "Average (lower=better)"] + relevant_columns filtered_data = sorted_data[visible_columns_final] filtered_data.columns = [col.replace("_", " ") for col in filtered_data.columns] formatter = {col: "{:.3f}" for col in filtered_data.columns if filtered_data[col].dtype in ["float64", "float32"]} # --- 核心改动点 2: 根据主题模式选择不同的配色方案 --- if is_dark_mode: # 夜间模式配色 (绿 -> 深灰 -> 红) colors = ["#2ca02c", "#2b2b2b", "#d62728"] else: # 日间模式配色 (绿 -> 白 -> 红) colors = ["#63be7b", "#ffffff", "#f8696b"] vmin, vmax, vmid = {}, {}, {} for column in filtered_data.columns: if column in ["Name", "Params (B)"]: continue col_values = filtered_data[column].dropna() if len(col_values) > 1: sorted_values = np.sort(col_values) vmin[column] = sorted_values.min() vmax[column] = sorted_values.max() idx = int(len(sorted_values) * midpoint) vmid[column] = sorted_values[idx] # --- 核心改动点 3: 修改样式函数以包含固定的黑色字体 --- def custom_background_gradient(series, cmap, vmin_val, vmax_val, vmid_val): if len(series) == 0: return series def normalize(x): if pd.isna(x): return 0.5 # Neutral for NaN if vmid_val == vmin_val and x <= vmid_val: return 0.0 if vmid_val == vmax_val and x >= vmid_val: return 1.0 if vmid_val == vmin_val or vmid_val == vmax_val: return 0.5 if x <= vmid_val: return 0.5 * (x - vmin_val) / (vmid_val - vmin_val) else: return 0.5 + 0.5 * (x - vmid_val) / (vmax_val - vmid_val) normed = series.apply(normalize) cmap_colors = [cmap(x) for x in normed] # 在返回的CSS中同时设置 background-color 和 color return [ "background-color: rgba({}, {}, {}, {}); color: black;".format(*[int(255 * c) for c in color[:3]], color[3]) for color in cmap_colors ] target_color_columns = [] if "Average" in color_columns: target_color_columns.append("Average (lower=better)") if "Individual Tests" in color_columns: target_color_columns.extend([col for col in filtered_data.columns if col not in ["Name", "Params (B)", "Average (lower=better)"]]) def color_params_column_dynamic(value): if not pd.notna(value): return "default" # 2. 根据 is_dark_mode 返回不同的颜色 if is_dark_mode: # 为夜间模式选择一个柔和、不刺眼的暗金色 # 字体颜色也设置为浅色以保证对比度 return "background-color: #4b4936; color: #f0f0f0;" else: # 为日间模式使用明亮的奶油色,字体为黑色 return "background-color: #fffdd0; color: black;" styler = filtered_data.style.format(formatter).map(color_params_column_dynamic, subset=["Params (B)"]) for column in target_color_columns: if column in vmin: custom_cmap = LinearSegmentedColormap.from_list("custom_cmap", colors) styler = styler.apply(custom_background_gradient, cmap=custom_cmap, vmin_val=vmin[column], vmax_val=vmax[column], vmid_val=vmid[column], subset=[column]) styler = styler.hide(axis="index") widths = [300, 150, 150, 100, 100, 100, 100, 100, 100, 100, 100] table_styles = [] table_styles.append({"selector": "th", "props": [("background-color", "var(--background-fill-secondary)"), ("color", "var(--body-text-color)"), ("padding", "8px"), ("font-weight", "bold")]}) table_styles.append({"selector": "table", "props": [("border-collapse", "collapse"), ("border", f"1px solid var(--border-color-primary)")]}) for i, w in enumerate(widths): table_styles.append({"selector": f"th.col{i}, td.col{i}", "props": [("min-width", f"{w}px"), ("max-width", f"{w}px"), ("text-align", "center"), ("border", f"1px solid var(--border-color-primary)")]}) styler = styler.set_table_styles(table_styles) return styler.to_html() def create_world_languages_gdp_chart(): languages = ["English", "Chinese", "Spanish", "Japanese", "German", "French", "Arabic", "Italian", "Portuguese", "Korean", "Other"] shares = [27, 18, 8, 6, 5, 4, 3, 2, 2, 2, 23] colors = ["#FF7F7F", "#FFA07A", "#FFDB58", "#90EE90", "#98FB98", "#87CEFA", "#B0C4DE", "#DDA0DD", "#D8BFD8", "#F0E68C", "#E0FFFF"] fig = go.Figure( data=[ go.Pie( labels=languages, values=shares, hole=0.3, marker=dict(colors=colors, line=dict(color="#FFFFFF", width=2)), textinfo="label+percent", textposition="outside", insidetextorientation="radial", textfont=dict(size=12), ) ] ) fig.update_layout( title={ "text": "World Languages by Share of Global GDP", "y": 0.95, "x": 0.5, "xanchor": "center", "yanchor": "top", "font": dict(size=20, color="black"), }, showlegend=False, width=700, height=500, margin=dict(t=80, b=20, l=20, r=20), ) return fig def check_model_exists(model_id): api = HfApi() try: model_info = api.model_info(model_id) return "Exists and is accessible" except GatedRepoError: return "Exists but is restricted" except HTTPError as e: if e.response.status_code == 404: return "Does not exist" else: return "Error: " + str(e) def submit_model(name): if "Exists" not in check_model_exists(name): return f"# ERROR: Model {name} does not exist on Hugging Face!" try: response = requests.post(webhook_url, json={"content": name}) if response.status_code == 200: response_data = response.json() if response_data.get("status") == "success": return "# SUCCESS: We will check the model as soon as possible. Thank you for your submission!" else: return f"# ERROR: {response_data.get('message', 'Unknown error')}" else: return f"# ERROR: Failed to submit model {name}. Server returned status code {response.status_code}." except requests.exceptions.HTTPError: return "# ERROR: Network error while contacting queue. Please try again in a few minutes." except Exception as e: print(e) return "ERROR: Unexpected error. Please try again later." def create_scaling_plot(all_data, period): selected_columns = ["Name", "Parameters Count (B)", "Average (The lower the better)"] target_data = all_data[period] new_df = pd.DataFrame() for size in target_data.keys(): new_df = pd.concat([new_df, target_data[size]["cr"].loc[:, selected_columns].dropna(axis=1, how="all")], axis=0) x_values = new_df["Parameters Count (B)"].astype(float).tolist() y_values = new_df["Average (The lower the better)"].astype(float).tolist() names = new_df["Name"].tolist() x_min, x_max = np.log10(min(x_values)), np.log10(max(x_values)) y_min, y_max = np.log10(min(y_values)), np.log10(max(y_values)) x_dtick = (x_max - x_min) / 4 y_dtick = (y_max - y_min) / 4 fig = go.Figure() fig.add_trace( go.Scatter( x=x_values, y=y_values, mode="markers", name="Models", marker=dict(size=12, color="#39C5BB", opacity=0.8), text=names, customdata=list(zip(x_values, y_values)), hovertemplate=( "%{text}
" + "Params: %{customdata[0]:.2f}B
" + "Compression Rate: %{customdata[1]:.2f}%
" + "" ), ) ) fig.update_layout( title={"text": "Compression Rate Scaling Law", "x": 0.5, "xanchor": "center", "yanchor": "top"}, width=800, height=600, showlegend=True, xaxis=dict( title="Parameters (B)", showgrid=True, zeroline=False, type="log", dtick=x_dtick, tickformat=".2f", range=[x_min - 0.1, x_max + 0.1], ), yaxis=dict( title="Compression Rate (%)", showgrid=True, zeroline=False, type="log", dtick=y_dtick, tickformat=".2f", range=[y_min - 0.1, y_max + 0.1], autorange="reversed", ), ) return fig def read_all_data(folder_name): all_data = {} time_list = [] for folder in get_folders_matching_format(folder_name): folder_name = os.path.basename(folder) time_list.append(folder_name) if all_data.get(folder) is None: all_data[folder_name] = {} for file_name in file_name_list: if all_data.get(file_name) is None: all_data[folder_name][file_name] = {} for sheet_name in sheet_name_list: final_file_name = os.path.join(folder, file_name) all_data[folder_name][file_name][sheet_name] = rename_columns(pd.read_excel(final_file_name + ".xlsx", sheet_name=sheet_name)) return all_data, time_list all_data, time_list = read_all_data("data") time_list.sort() last_period = time_list[-1] initial_fig = create_scaling_plot(all_data, last_period) initial_metric = metric_list[0] initial_columns = get_unique_column_names(all_data) initial_colors = ["Average", "Individual Tests"] initial_size_range = [0, 40] # 初始调用 update_table 时,request 参数将为默认的 None initial_data = update_table(last_period, model_size_list, initial_metric, initial_columns, initial_colors, initial_size_range) css = """ .gradio-container { max-width: 95% !important; margin: 0 auto; } .tab-buttons button { font-size: 1.3em; } .gr-dataframe th { white-space: normal; word-break: break-word; } table { margin-left: auto !important; margin-right: auto !important; width: 100% !important; } """ TITLE_HTML = '

🏆 LLM Compression Leaderboard

' SUBTITLE_HTML = "

Welcome to Uncheatable Eval LLM Compression Leaderboard, where fancy fine-tuning and cheating won't work 🚫; only compute 💻, data 📊, and real innovation 🔥 can prevail!

" # theme = gr.themes.Default(primary_hue=slate, secondary_hue=slate) theme = gr.themes.Default() with gr.Blocks(theme=theme, css=css) as demo: gr.HTML(TITLE_HTML) gr.HTML(SUBTITLE_HTML) with gr.Tabs() as tabs: with gr.Tab("🏆 Leaderboard"): with gr.Row(): with gr.Column(): period_selector = gr.Dropdown(label="Period", choices=time_list, value=last_period) model_selector = gr.CheckboxGroup(label="Model Size", choices=model_size_list, value=model_size_list) size_range_slider = RangeSlider(minimum=0, maximum=40, value=[0, 40], step=0.1, label="Model Size Range") metric_selector = gr.Dropdown(label="Metric", choices=metric_list, value=initial_metric) with gr.Column(): midpoint_slider = gr.Slider(minimum=0.1, maximum=0.9, value=0.5, step=0.01, label="Color Gradient Midpoint") color_selector = gr.CheckboxGroup(label="Colored Columns", choices=["Average", "Individual Tests"], value=initial_colors) colfilter = gr.CheckboxGroup(label="Data Source", choices=get_unique_column_names(all_data), value=initial_columns) table = gr.HTML(initial_data) # --- 核心改动点 4: 更新所有 .change() 事件,添加 gr.Request() --- # 定义共享的输入列表,避免重复 shared_inputs = [period_selector, model_selector, metric_selector, colfilter, color_selector, size_range_slider, midpoint_slider] period_selector.change(update_table, inputs=shared_inputs, outputs=table) model_selector.change(update_table, inputs=shared_inputs, outputs=table) metric_selector.change(update_table, inputs=shared_inputs, outputs=table) colfilter.change(update_table, inputs=shared_inputs, outputs=table) color_selector.change(update_table, inputs=shared_inputs, outputs=table) size_range_slider.change(update_table, inputs=shared_inputs, outputs=table) midpoint_slider.change(update_table, inputs=shared_inputs, outputs=table) with gr.Tab("🌍 MultiLang"): gr.Markdown("## Coming soon...") # world_languages_plot = gr.Plot(create_world_languages_gdp_chart()) with gr.Tab("📈 Scaling Law"): period_selector_2 = gr.Dropdown(label="Period", choices=time_list, value=last_period) def update_plot(period): new_fig = create_scaling_plot(all_data, period) return new_fig plot = gr.Plot(initial_fig) period_selector_2.change(update_plot, inputs=period_selector_2, outputs=plot) with gr.Tab("ℹ️ About"): gr.Markdown(read_about_md()) with gr.Tab("🚀 Submit"): with gr.Group(): with gr.Row(): model_name = gr.Textbox(max_lines=1, placeholder="Enter model name...", show_label=False, scale=4) submit = gr.Button("Submit", variant="primary", scale=0) output = gr.Markdown("# Enter a public HF repo id, then hit Submit to add it to the evaluation queue.") submit.click(fn=submit_model, inputs=model_name, outputs=output) demo.launch(share=False)