# app.py — Robust Character Generator Space from datasets import load_dataset import gradio as gr, json, os, random, torch, spaces from diffusers import FluxPipeline, AutoencoderKL from gradio_client import Client from live_preview_helpers import ( flux_pipe_call_that_returns_an_iterable_of_images as flux_iter, ) # 1. Device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 2. FLUX image pipeline pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16 ).to(device) good_vae = AutoencoderKL.from_pretrained( "black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16 ).to(device) pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_iter.__get__(pipe) # 3. LLM client (robust) LLM_SPACES = [ "https://huggingfaceh4-zephyr-chat.hf.space", "meta-llama/Llama-3.3-70B-Instruct", "huggingface-projects/gemma-2-9b-it", ] def first_live_space(space_ids: list[str]) -> Client: for sid in space_ids: try: print(f"[info] probing {sid}") c = Client(sid, hf_token=os.getenv("HF_TOKEN")) _ = c.predict("ping", 8, api_name="/chat") print(f"[info] using {sid}") return c except Exception as e: print(f"[warn] {sid} unusable → {e}") raise RuntimeError("No live chat Space found!") llm_client = first_live_space(LLM_SPACES) CHAT_API = "/chat" def call_llm(prompt: str, max_tokens: int = 256, temperature: float = 0.6, top_p: float = 0.9) -> str: try: return llm_client.predict( prompt, max_tokens, temperature, top_p, api_name=CHAT_API ).strip() except Exception as exc: print(f"[error] LLM failure → {exc}") return "…" # 4. Persona dataset ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train") def random_persona() -> str: return ds[random.randint(0, len(ds) - 1)]["persona"] # 5. Text prompts PROMPT_TEMPLATE = """Generate a character with this persona description: {persona_description} In a world with this description: {world_description} Write the character in JSON with keys: name, background, appearance, personality, skills_and_abilities, goals, conflicts, backstory, current_situation, spoken_lines (list of strings). Respond with JSON only (no markdown).""" WORLD_PROMPT = ( "Invent a short, unique and vivid world description. " "Respond with the description only." ) # 6. Helper functions def random_world() -> str: return call_llm(WORLD_PROMPT, max_tokens=120) def safe_json_parse(raw): """Try to parse JSON, return None if fail, and log.""" try: return json.loads(raw) except Exception as e: print(f"[ERROR] JSON parsing failed: {e}") print(f"[DEBUG] Raw output: {raw[:1000]}") return None @spaces.GPU(duration=75) def infer_flux(character_json): # Defensive: If not a dict or missing appearance, bail out if not isinstance(character_json, dict) or "appearance" not in character_json: print("[ERROR] No valid appearance to generate image.") return None for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=character_json["appearance"], guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024, generator=torch.Generator("cpu").manual_seed(0), output_type="pil", good_vae=good_vae, ): yield img def generate_character(world_desc: str, persona_desc: str, progress=gr.Progress(track_tqdm=True)): # First attempt raw = call_llm( PROMPT_TEMPLATE.format( persona_description=persona_desc, world_description=world_desc, ), max_tokens=1024, ) character = safe_json_parse(raw) if character: return character # Retry once raw2 = call_llm( PROMPT_TEMPLATE.format( persona_description=persona_desc, world_description=world_desc, ), max_tokens=1024, ) character2 = safe_json_parse(raw2) if character2: return character2 # If both fail, return error and raw outputs for debugging return { "error": "LLM did not return valid JSON after 2 attempts.", "first_raw": raw, "second_raw": raw2, "tip": "Check your LLM prompt and output. Try regenerating.", } # 7. Gradio UI DESCRIPTION = """ * Generates a JSON character sheet from a world + persona. * Appearance images via **FLUX-dev**; story text via Zephyr-chat or Gemma fallback. * Personas sampled from **FinePersonas-Lite**. Tip → Shuffle the world then persona for rapid inspiration. """ with gr.Blocks(title="Character Generator", theme="Nymbo/Nymbo_Theme") as demo: gr.Markdown("

🧝‍♂️ Character Generator

") gr.Markdown(DESCRIPTION.strip()) with gr.Row(): world_tb = gr.Textbox(label="World Description", lines=10, scale=4) persona_tb = gr.Textbox( label="Persona Description", value=random_persona(), lines=10, scale=1 ) with gr.Row(): btn_world = gr.Button("🔄 Random World", variant="secondary") btn_generate = gr.Button("✨ Generate Character", variant="primary", scale=5) btn_persona = gr.Button("🔄 Random Persona", variant="secondary") with gr.Row(): img_out = gr.Image(label="Character Image") json_out = gr.JSON(label="Character Description") btn_generate.click( generate_character, [world_tb, persona_tb], [json_out] ).then( infer_flux, [json_out], [img_out] ) btn_world.click(random_world, outputs=[world_tb]) btn_persona.click(random_persona, outputs=[persona_tb]) demo.queue().launch(share=False)