|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import division |
|
import numpy as np |
|
import cv2 |
|
import onnx |
|
import onnxruntime |
|
from ..utils import face_align |
|
from ..utils import transform |
|
from ..data import get_object |
|
|
|
__all__ = [ |
|
'Landmark', |
|
] |
|
|
|
|
|
class Landmark: |
|
def __init__(self, model_file=None, session=None): |
|
assert model_file is not None |
|
self.model_file = model_file |
|
self.session = session |
|
find_sub = False |
|
find_mul = False |
|
model = onnx.load(self.model_file) |
|
graph = model.graph |
|
for nid, node in enumerate(graph.node[:8]): |
|
|
|
if node.name.startswith('Sub') or node.name.startswith('_minus'): |
|
find_sub = True |
|
if node.name.startswith('Mul') or node.name.startswith('_mul'): |
|
find_mul = True |
|
if nid<3 and node.name=='bn_data': |
|
find_sub = True |
|
find_mul = True |
|
if find_sub and find_mul: |
|
|
|
input_mean = 0.0 |
|
input_std = 1.0 |
|
else: |
|
input_mean = 127.5 |
|
input_std = 128.0 |
|
self.input_mean = input_mean |
|
self.input_std = input_std |
|
|
|
if self.session is None: |
|
self.session = onnxruntime.InferenceSession(self.model_file, None) |
|
input_cfg = self.session.get_inputs()[0] |
|
input_shape = input_cfg.shape |
|
input_name = input_cfg.name |
|
self.input_size = tuple(input_shape[2:4][::-1]) |
|
self.input_shape = input_shape |
|
outputs = self.session.get_outputs() |
|
output_names = [] |
|
for out in outputs: |
|
output_names.append(out.name) |
|
self.input_name = input_name |
|
self.output_names = output_names |
|
assert len(self.output_names)==1 |
|
output_shape = outputs[0].shape |
|
self.require_pose = False |
|
|
|
if output_shape[1]==3309: |
|
self.lmk_dim = 3 |
|
self.lmk_num = 68 |
|
self.mean_lmk = get_object('meanshape_68.pkl') |
|
self.require_pose = True |
|
else: |
|
self.lmk_dim = 2 |
|
self.lmk_num = output_shape[1]//self.lmk_dim |
|
self.taskname = 'landmark_%dd_%d'%(self.lmk_dim, self.lmk_num) |
|
|
|
def prepare(self, ctx_id, **kwargs): |
|
if ctx_id<0: |
|
self.session.set_providers(['CPUExecutionProvider']) |
|
|
|
def get(self, img, face): |
|
bbox = face.bbox |
|
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) |
|
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 |
|
rotate = 0 |
|
_scale = self.input_size[0] / (max(w, h)*1.5) |
|
|
|
aimg, M = face_align.transform(img, center, self.input_size[0], _scale, rotate) |
|
input_size = tuple(aimg.shape[0:2][::-1]) |
|
|
|
blob = cv2.dnn.blobFromImage(aimg, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) |
|
pred = self.session.run(self.output_names, {self.input_name : blob})[0][0] |
|
if pred.shape[0] >= 3000: |
|
pred = pred.reshape((-1, 3)) |
|
else: |
|
pred = pred.reshape((-1, 2)) |
|
if self.lmk_num < pred.shape[0]: |
|
pred = pred[self.lmk_num*-1:,:] |
|
pred[:, 0:2] += 1 |
|
pred[:, 0:2] *= (self.input_size[0] // 2) |
|
if pred.shape[1] == 3: |
|
pred[:, 2] *= (self.input_size[0] // 2) |
|
|
|
IM = cv2.invertAffineTransform(M) |
|
pred = face_align.trans_points(pred, IM) |
|
face[self.taskname] = pred |
|
if self.require_pose: |
|
P = transform.estimate_affine_matrix_3d23d(self.mean_lmk, pred) |
|
s, R, t = transform.P2sRt(P) |
|
rx, ry, rz = transform.matrix2angle(R) |
|
pose = np.array( [rx, ry, rz], dtype=np.float32 ) |
|
face['pose'] = pose |
|
return pred |
|
|
|
|
|
|