import difflib from datetime import datetime class SelfAwareness: def __init__(self, ai_instance): self.ai = ai_instance self.memory = [] self.current_model = "" self.update_logs = [] def update_self_model(self): current_state = str(self.ai) self.memory.append(current_state) if self.current_model: diff = self.analyze_diff(self.current_model, current_state) self.update_model_based_on_diff(diff) else: self.current_model = current_state insights = self.generate_insights(current_state) self.ai.conversation_context.append({"role": "system", "content": insights}) def analyze_diff(self, old_state, new_state): differ = difflib.Differ() return list(differ.compare(old_state.splitlines(), new_state.splitlines())) def update_model_based_on_diff(self, diff): self.current_model = str(self.ai) impact_analysis = self.analyze_change_impact(diff) self.log_model_update(impact_analysis) def analyze_change_impact(self, diff): additions = [line for line in diff if line.startswith('+')] deletions = [line for line in diff if line.startswith('-')] modifications = [line for line in diff if line.startswith('?')] impact = { 'additions': len(additions), 'deletions': len(deletions), 'modifications': len(modifications) } return impact def generate_insights(self, current_state): prompt = f"Analyze the following AI state and provide insights:\n\n{current_state}" return self.ai.generate_response(prompt) def implement_improvement(self, suggestion): prompt = f"Implement the following improvement:\n\n{suggestion}" return self.ai.generate_response(prompt) def log_model_update(self, impact_analysis): log_entry = f"Model updated on {datetime.now()}. Impact analysis: {impact_analysis}" self.update_logs.append(log_entry)