Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import json | |
import os | |
import time | |
from collections import defaultdict | |
from PIL import Image | |
import io | |
import pandas as pd | |
BASE_URL = "https://api.jigsawstack.com/v1" | |
headers = { | |
"x-api-key":os.getenv("JIGSAWSTACK_API_KEY") | |
} | |
# Rate limiting configuration | |
request_times = defaultdict(list) | |
MAX_REQUESTS = 20 # Maximum requests per time window | |
TIME_WINDOW = 3600 # Time window in seconds (1 hour) | |
def get_real_ip(request: gr.Request): | |
"""Extract real IP address using x-forwarded-for header or fallback""" | |
if not request: | |
return "unknown" | |
forwarded = request.headers.get("x-forwarded-for") | |
if forwarded: | |
ip = forwarded.split(",")[0].strip() # First IP in the list is the client's | |
else: | |
ip = request.client.host # fallback | |
return ip | |
def check_rate_limit(request: gr.Request): | |
"""Check if the current request exceeds rate limits""" | |
if not request: | |
return True, "Rate limit check failed - no request info" | |
ip = get_real_ip(request) | |
now = time.time() | |
# Clean up old timestamps outside the time window | |
request_times[ip] = [t for t in request_times[ip] if now - t < TIME_WINDOW] | |
# Check if rate limit exceeded | |
if len(request_times[ip]) >= MAX_REQUESTS: | |
time_remaining = int(TIME_WINDOW - (now - request_times[ip][0])) | |
time_remaining_minutes = round(time_remaining / 60, 1) | |
time_window_minutes = round(TIME_WINDOW / 60, 1) | |
return False, f"Rate limit exceeded. You can make {MAX_REQUESTS} requests per {time_window_minutes} minutes. Try again in {time_remaining_minutes} minutes." | |
# Add current request timestamp | |
request_times[ip].append(now) | |
return True, "" | |
def analyze_sentiment(text, request: gr.Request): | |
rate_limit_ok, rate_limit_msg = check_rate_limit(request) | |
if not rate_limit_ok: | |
return f"β {rate_limit_msg}", None, None, None, None | |
if not text or not text.strip(): | |
return "Error: Text input is required.", None, None, None, None | |
try: | |
response = requests.post( | |
f"{BASE_URL}/ai/sentiment", | |
headers=headers, | |
json={"text": text.strip()} | |
) | |
response.raise_for_status() | |
result = response.json() | |
if not result.get("success"): | |
error_msg = f"Error: API call failed - {result.get('message', 'Unknown error')}" | |
return error_msg, None, None, None, None | |
sentiment_data = result.get("sentiment", {}) | |
overall_emotion = sentiment_data.get("emotion", "N/A") | |
overall_sentiment = sentiment_data.get("sentiment", "N/A") | |
overall_score = sentiment_data.get("score", "N/A") | |
sentences = sentiment_data.get("sentences", []) | |
if sentences: | |
sentence_df = pd.DataFrame(sentences) | |
sentence_df = sentence_df[['text', 'emotion', 'sentiment', 'score']] | |
sentence_df.rename(columns={'text': 'Sentence', 'emotion': 'Emotion', 'sentiment': 'Sentiment', 'score': 'Score'}, inplace=True) | |
else: | |
sentence_df = pd.DataFrame(columns=['Sentence', 'Emotion', 'Sentiment', 'Score']) | |
status_message = "β Sentiment analysis complete." | |
return status_message, overall_emotion, overall_sentiment, str(overall_score), sentence_df | |
except requests.exceptions.RequestException as e: | |
return f"Request failed: {str(e)}", None, None, None, None | |
except Exception as e: | |
return f"An unexpected error occurred: {str(e)}", None, None, None, None | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
<div style='text-align: center; margin-bottom: 24px;'> | |
<h1 style='font-size:2.2em; margin-bottom: 0.2em;'>π§© Analyze Sentiment</h1> | |
<p style='font-size:1.2em; margin-top: 0;'>Perform line-by-line sentiment analysis on any text with detailed emotion detection.</p> | |
<p style='font-size:1em; margin-top: 0.5em;'>For more details and API usage, see the <a href='https://jigsawstack.com/docs/api-reference/ai/sentiment' target='_blank'>documentation</a>.</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("#### Input Text") | |
sentiment_text = gr.Textbox( | |
label="Text to Analyze", | |
lines=8, | |
placeholder="Enter the text you want to analyze here..." | |
) | |
sentiment_btn = gr.Button("Analyze Sentiment", variant="primary") | |
with gr.Column(): | |
gr.Markdown("#### Overall Analysis") | |
sentiment_status = gr.Textbox(label="Status", interactive=False) | |
sentiment_emotion = gr.Textbox(label="Overall Emotion", interactive=False) | |
sentiment_sentiment = gr.Textbox(label="Overall Sentiment", interactive=False) | |
sentiment_score = gr.Textbox(label="Overall Score", interactive=False) | |
gr.Markdown("#### Sentence-Level Breakdown") | |
sentiment_sentences_df = gr.DataFrame(label="Sentence Analysis") | |
sentiment_btn.click( | |
analyze_sentiment, | |
inputs=[sentiment_text], | |
outputs=[sentiment_status, sentiment_emotion, sentiment_sentiment, sentiment_score, sentiment_sentences_df] | |
) | |
demo.launch() | |