import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load model and tokenizer model_name = "VietAI/envit5-translation" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Translation function def translate(text): input_ids = tokenizer(text, return_tensors="pt", padding=True).input_ids output_ids = model.generate(input_ids, max_length=512) return tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] # Gradio interface demo = gr.Interface( fn=translate, inputs="text", outputs="text", title="Vietnamese-English Translation", description="Translate text between English and Vietnamese using the VietAI envit5 model." ) # Launch the Gradio app demo.launch(debug=True)