import cv2 from os.path import join as pjoin import time import json import numpy as np import detect_compo.lib_ip.ip_preprocessing as pre import detect_compo.lib_ip.ip_draw as draw import detect_compo.lib_ip.ip_detection as det import detect_compo.lib_ip.file_utils as file import detect_compo.lib_ip.Component as Compo from config.CONFIG_UIED import Config C = Config() def resolve_uicompo_containment(uicompos): """ Resolves containment issues among UI components. If a component's bounding box is fully contained within another's, it is removed. """ def contains(bbox_a, bbox_b): """Checks if bbox_a completely contains bbox_b.""" return bbox_a.col_min <= bbox_b.col_min and \ bbox_a.row_min <= bbox_b.row_min and \ bbox_a.col_max >= bbox_b.col_max and \ bbox_a.row_max >= bbox_b.row_max compos_to_remove = set() for i, compo1 in enumerate(uicompos): for j, compo2 in enumerate(uicompos): if i == j: continue # Check if compo1 contains compo2 if contains(compo1.bbox, compo2.bbox): compos_to_remove.add(j) # Filter out the contained components final_compos = [compo for i, compo in enumerate(uicompos) if i not in compos_to_remove] if len(final_compos) < len(uicompos): print(f"Containment resolved: Removed {len(uicompos) - len(final_compos)} contained components.") return final_compos def nesting_inspection(org, grey, compos, ffl_block): ''' Inspect all big compos through block division by flood-fill :param ffl_block: gradient threshold for flood-fill :return: nesting compos ''' nesting_compos = [] for i, compo in enumerate(compos): if compo.height > 50: replace = False clip_grey = compo.compo_clipping(grey) n_compos = det.nested_components_detection(clip_grey, org, grad_thresh=ffl_block, show=False) Compo.cvt_compos_relative_pos(n_compos, compo.bbox.col_min, compo.bbox.row_min) for n_compo in n_compos: if n_compo.redundant: compos[i] = n_compo replace = True break if not replace: nesting_compos += n_compos return nesting_compos def compo_detection(input_img_path, output_root, uied_params, resize_by_height=800, classifier=None, show=False, wai_key=0): start = time.perf_counter() name = input_img_path.split('/')[-1][:-4] if '/' in input_img_path else input_img_path.split('\\')[-1][:-4] ip_root = file.build_directory(pjoin(output_root, "ip")) # *** Step 1 *** pre-processing: read img -> get binary map org, grey = pre.read_img(input_img_path, resize_by_height) binary = pre.binarization(org, grad_min=int(uied_params['min-grad'])) # *** Step 2 *** element detection det.rm_line(binary, show=show, wait_key=wai_key) uicompos = det.component_detection(binary, min_obj_area=int(uied_params['min-ele-area'])) # *** Step 3 *** results refinement uicompos = det.compo_filter(uicompos, min_area=int(uied_params['min-ele-area']), img_shape=binary.shape) uicompos = det.merge_intersected_compos(uicompos) det.compo_block_recognition(binary, uicompos) if uied_params['merge-contained-ele']: uicompos = det.rm_contained_compos_not_in_block(uicompos) Compo.compos_update(uicompos, org.shape) Compo.compos_containment(uicompos) # *** Step 4 ** nesting inspection: check if big compos have nesting element uicompos += nesting_inspection(org, grey, uicompos, ffl_block=uied_params['ffl-block']) Compo.compos_update(uicompos, org.shape) draw.draw_bounding_box(org, uicompos, show=show, name='merged compo', write_path=pjoin(ip_root, name + '.jpg'), wait_key=wai_key) # *** Step 5 *** image inspection: recognize image -> remove noise in image -> binarize with larger threshold and reverse -> rectangular compo detection # if classifier is not None: # classifier['Image'].predict(seg.clipping(org, uicompos), uicompos) # draw.draw_bounding_box_class(org, uicompos, show=show) # uicompos = det.rm_noise_in_large_img(uicompos, org) # draw.draw_bounding_box_class(org, uicompos, show=show) # det.detect_compos_in_img(uicompos, binary_org, org) # draw.draw_bounding_box(org, uicompos, show=show) # if classifier is not None: # classifier['Noise'].predict(seg.clipping(org, uicompos), uicompos) # draw.draw_bounding_box_class(org, uicompos, show=show) # uicompos = det.rm_noise_compos(uicompos) # *** Step 6 *** element classification: all category classification # if classifier is not None: # classifier['Elements'].predict([compo.compo_clipping(org) for compo in uicompos], uicompos) # draw.draw_bounding_box_class(org, uicompos, show=show, name='cls', write_path=pjoin(ip_root, 'result.jpg')) # draw.draw_bounding_box_class(org, uicompos, write_path=pjoin(output_root, 'result.jpg')) # *** Step 7 *** save detection result Compo.compos_update(uicompos, org.shape) # *** Step 8 *** Resolve containment before saving uicompos = resolve_uicompo_containment(uicompos) file.save_corners_json(pjoin(ip_root, name + '.json'), uicompos) print("[Compo Detection Completed in %.3f s] Input: %s Output: %s" % (time.perf_counter() - start, input_img_path, pjoin(ip_root, name + '.json'))) return uicompos