Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import cv2 | |
import numpy as np | |
# Title and description of the app | |
st.title("YOLOv5 Object Detection with Video Input") | |
st.write("Live object detection from your webcam using YOLOv5!") | |
# Load the pre-trained YOLOv5 model (COCO dataset) | |
def load_model(): | |
return torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) | |
model = load_model() | |
# Create a function to process video frames and apply YOLOv5 | |
def process_frame(frame, model): | |
# Perform inference | |
results = model(frame) | |
# Extract detections | |
detections = results.pandas().xyxy[0] | |
# Draw bounding boxes and labels on the frame | |
for _, row in detections.iterrows(): | |
x1, y1, x2, y2 = int(row['xmin']), int(row['ymin']), int(row['xmax']), int(row['ymax']) | |
label = f"{row['name']} {row['confidence']:.2f}" | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2) | |
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (36, 255, 12), 2) | |
return frame | |
# Start video capture | |
run_video = st.checkbox("Start Webcam") | |
if run_video: | |
# Initialize the webcam | |
cap = cv2.VideoCapture(0) # 0 is the default camera | |
if not cap.isOpened(): | |
st.error("Error: Could not open the webcam.") | |
else: | |
# Stream video | |
stframe = st.empty() # Placeholder for displaying video frames | |
while run_video: | |
ret, frame = cap.read() | |
if not ret: | |
st.error("Error: Failed to capture video.") | |
break | |
# Process the frame with YOLOv5 | |
processed_frame = process_frame(frame, model) | |
# Convert BGR to RGB for Streamlit | |
processed_frame = cv2.cvtColor(processed_frame, cv2.COLOR_BGR2RGB) | |
# Display the frame in Streamlit | |
stframe.image(processed_frame, channels="RGB", use_column_width=True) | |
cap.release() | |
else: | |
st.write("Enable the checkbox above to start the webcam.") | |