File size: 37,752 Bytes
7da0087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528d2e7
 
 
 
7da0087
528d2e7
 
7da0087
 
528d2e7
 
 
 
 
 
 
 
 
 
 
 
7da0087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528d2e7
7da0087
528d2e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7da0087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528d2e7
 
 
 
 
 
7da0087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528d2e7
 
 
 
 
 
 
7da0087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528d2e7
 
 
 
 
 
7da0087
528d2e7
 
 
7da0087
 
 
528d2e7
7da0087
 
 
 
 
528d2e7
7da0087
528d2e7
 
 
 
7da0087
 
 
 
 
528d2e7
7da0087
 
 
 
 
528d2e7
 
 
7da0087
 
 
528d2e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7da0087
 
528d2e7
 
 
7da0087
528d2e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7da0087
 
528d2e7
 
 
7da0087
528d2e7
 
 
 
 
 
 
 
 
 
7da0087
 
 
528d2e7
 
7da0087
 
 
 
528d2e7
7da0087
 
 
 
 
 
 
 
 
528d2e7
 
 
 
 
 
7da0087
 
 
 
 
 
 
528d2e7
 
 
7da0087
 
 
 
528d2e7
 
 
 
 
 
 
 
 
 
 
 
 
7da0087
 
 
528d2e7
7da0087
528d2e7
 
7da0087
 
528d2e7
a3fb832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
"""

Simplified LangGraph-based GAIA Agent Implementation



This module provides a streamlined implementation of the GAIA agent using LangGraph

for workflow management. It has been designed to be robust, maintainable, and 

directly usable in the Huggingface Space environment.



Key features:

- Direct tool integration

- Simplified prompt construction

- Clear execution flow

- Robust error handling

- Fallback mechanisms for critical components

"""

import logging
import time
import os
import json
import re
import traceback
import hashlib
from typing import Dict, Any, List, Optional, Union, Tuple, Literal, TypedDict

# LangChain & LangGraph imports
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain_core.output_parsers import StrOutputParser
from langgraph.graph import StateGraph, END
from langchain_openai import ChatOpenAI

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("gaia_agent")

# Environment variables and configuration with default values
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
SERPER_API_KEY = os.getenv("SERPER_API_KEY", "")
PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_API_KEY", "")
SERPER_API_URL = os.getenv("SERPER_API_URL", "https://google.serper.dev/search")
SUPABASE_URL = os.getenv("SUPABASE_URL", "")
SUPABASE_KEY = os.getenv("SUPABASE_KEY", "")
USER_AGENT = os.getenv("USER_AGENT", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36")

# Log warnings for critical missing environment variables
if not OPENAI_API_KEY:
    logger.warning("OPENAI_API_KEY is not set. Agent will use fallback mode with limited capabilities.")
if not SERPER_API_KEY and not PERPLEXITY_API_KEY:
    logger.warning("Neither SERPER_API_KEY nor PERPLEXITY_API_KEY is set. Web search capabilities will be limited.")
elif not SERPER_API_KEY:
    logger.warning("SERPER_API_KEY is not set. Will attempt to use Perplexity for search if available.")
elif not PERPLEXITY_API_KEY:
    logger.warning("PERPLEXITY_API_KEY is not set. Will use Serper for search capabilities.")
if not SUPABASE_URL or not SUPABASE_KEY:
    logger.warning("SUPABASE_URL or SUPABASE_KEY is not set. Memory persistence will be limited to in-memory storage.")

# Try to import web search libraries but handle ImportError gracefully
try:
    from duckduckgo_search import DDGS
    DDGS_AVAILABLE = True
except ImportError:
    DDGS_AVAILABLE = False
    logger.warning("DuckDuckGo search package not available. Some search features will be limited.")

try:
    import requests
    from bs4 import BeautifulSoup
    WEB_TOOLS_AVAILABLE = True
except ImportError:
    WEB_TOOLS_AVAILABLE = False
    logger.warning("Web tools dependencies not available. Web content extraction will be limited.")

# Type definitions for LangGraph states
class AgentState(TypedDict):
    """Type for agent state."""
    question: str
    analysis: Optional[Dict[str, Any]]
    plan: Optional[List[Dict[str, Any]]]
    current_step: Optional[int]
    tool_results: List[Dict[str, Any]]
    reasoning: Optional[str]
    answer: Optional[str]
    error: Optional[str]

# Simple Memory Implementation
class SimpleMemory:
    """Simple in-memory storage for conversation history and results"""
    
    def __init__(self):
        self.conversations = {}
        self.result_cache = {}
    
    def add_conversation(self, session_id: str, role: str, content: str):
        """Add a message to the conversation history"""
        if session_id not in self.conversations:
            self.conversations[session_id] = []
        
        self.conversations[session_id].append({
            "role": role,
            "content": content,
            "timestamp": time.time()
        })
    
    def get_conversation(self, session_id: str, max_messages: int = 10) -> List[Dict[str, Any]]:
        """Get the conversation history for a session"""
        if session_id not in self.conversations:
            return []
        
        # Return the most recent messages
        return self.conversations[session_id][-max_messages:]
    
    def cache_result(self, key: str, value: Any):
        """Store a result in the cache"""
        self.result_cache[key] = {
            "value": value,
            "timestamp": time.time()
        }
    
    def get_cached_result(self, key: str, max_age_seconds: int = 3600) -> Optional[Any]:
        """Get a result from the cache if it exists and is not too old"""
        if key not in self.result_cache:
            return None
        
        cache_entry = self.result_cache[key]
        age = time.time() - cache_entry["timestamp"]
        
        if age > max_age_seconds:
            # Cache entry is too old
            return None
        
        return cache_entry["value"]
    
    def clear(self, session_id: Optional[str] = None):
        """Clear memory for a session or all sessions if not specified"""
        if session_id:
            if session_id in self.conversations:
                del self.conversations[session_id]
        else:
            self.conversations = {}
            self.result_cache = {}

# Web Search Tool Implementation
class WebSearchTool:
    """Tool for searching the web using available search engines"""
    
    def __init__(self):
        self.result_count = 5
        self.timeout = 10
    
    def search(self, query: str) -> List[Dict[str, Any]]:
        """Search using the best available search method"""
        # Prioritize DuckDuckGo as it doesn't require an API key
        if DDGS_AVAILABLE:
            results = self._search_duckduckgo(query)
            if results:  # If DuckDuckGo returns results, use them
                return results
        
        # Fall back to Serper if DuckDuckGo fails or is unavailable
        if SERPER_API_KEY and WEB_TOOLS_AVAILABLE:
            results = self._search_serper(query)
            if results:
                return results
                
        # If all search methods fail, return a message in search result format
        logger.warning("All search methods failed or unavailable")
        return [
            {
                "title": "Search Unavailable",
                "link": "",
                "snippet": "Search functionality is currently unavailable. Please ensure that either DuckDuckGo package is installed or SERPER_API_KEY is set."
            }
        ]
    
    def _search_duckduckgo(self, query: str) -> List[Dict[str, Any]]:
        """Search using DuckDuckGo"""
        if not DDGS_AVAILABLE:
            logger.warning("DuckDuckGo package not available")
            return []
        
        try:
            results = []
            with DDGS() as ddgs:
                ddg_results = list(ddgs.text(
                    query,
                    max_results=self.result_count,
                    timelimit=self.timeout
                ))
                
                for result in ddg_results:
                    results.append({
                        "title": result.get("title", ""),
                        "link": result.get("href", ""),
                        "snippet": result.get("body", "")
                    })
            
            return results
        except Exception as e:
            logger.error(f"Error searching DuckDuckGo: {str(e)}")
            return []
    
    def _search_serper(self, query: str) -> List[Dict[str, Any]]:
        """Search using Serper API if available"""
        if not SERPER_API_KEY:
            logger.warning("Serper API key not set")
            return []
            
        if not WEB_TOOLS_AVAILABLE:
            logger.warning("Web tools not available")
            return []
        
        try:
            headers = {
                "X-API-KEY": SERPER_API_KEY,
                "Content-Type": "application/json"
            }
            
            payload = {
                "q": query,
                "num": self.result_count
            }
            
            response = requests.post(
                SERPER_API_URL,
                headers=headers,
                json=payload,
                timeout=self.timeout
            )
            
            response.raise_for_status()
            data = response.json()
            
            results = []
            for result in data.get("organic", []):
                results.append({
                    "title": result.get("title", ""),
                    "link": result.get("link", ""),
                    "snippet": result.get("snippet", "")
                })
            
            return results
        except Exception as e:
            logger.error(f"Error searching with Serper: {str(e)}")
            return []

# Content Extraction Tool
class ContentExtractor:
    """Tool for extracting content from web pages"""
    
    def __init__(self):
        self.timeout = 10
        self.max_content_length = 8000
    
    def extract_content(self, url: str) -> Dict[str, Any]:
        """Extract content from a web page"""
        if not WEB_TOOLS_AVAILABLE:
            logger.warning("Web tools not available for content extraction")
            return {
                "url": url,
                "title": "Content Extraction Unavailable",
                "content": "Web content extraction is currently unavailable. Please ensure that requests and BeautifulSoup packages are installed.",
                "success": False,
                "error": "Web tools dependencies not available"
            }
        
        try:
            headers = {"User-Agent": USER_AGENT}
            response = requests.get(url, headers=headers, timeout=self.timeout)
            response.raise_for_status()
            
            soup = BeautifulSoup(response.text, "html.parser")
            
            # Extract title
            title = soup.title.string if soup.title else ""
            
            # Remove scripts and styles
            for script in soup(["script", "style"]):
                script.extract()
            
            # Get text content
            text = soup.get_text()
            lines = (line.strip() for line in text.splitlines())
            chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
            text = "\n".join(chunk for chunk in chunks if chunk)
            
            # Truncate if too long
            if len(text) > self.max_content_length:
                text = text[:self.max_content_length] + "..."
            
            return {
                "url": url,
                "title": title,
                "content": text,
                "success": True
            }
        except Exception as e:
            logger.error(f"Error extracting content from {url}: {str(e)}")
            return {
                "url": url,
                "error": str(e),
                "success": False
            }

# LangGraph State Management
def analyze_question(state: AgentState, llm) -> AgentState:
    """Analyze the question to determine type and needs"""
    try:
        template = """

        You're an expert at analyzing questions. Examine this question and provide an analysis in JSON format:

        

        Question: {question}

        

        Your analysis should include:

        1. question_type: The type of question (factual, how-to, analytical, etc.)

        2. complexity: A rating from 1-5 of how complex the question is

        3. required_tools: List of tools that would help answer this question (web_search, content_extraction, etc.)

        4. information_sources: Likely sources of information for this answer (web, academic papers, etc.)

        

        Format your response as valid JSON.

        """
        
        prompt = ChatPromptTemplate.from_messages([
            ("system", template),
            ("human", "{question}")
        ])
        
        chain = prompt | llm | StrOutputParser()
        
        analysis_text = chain.invoke({"question": state["question"]})
        
        # Parse JSON response, with error handling
        try:
            analysis = json.loads(analysis_text)
        except json.JSONDecodeError:
            # If JSON parsing fails, extract JSON-like content
            match = re.search(r'\{.*\}', analysis_text, re.DOTALL)
            if match:
                try:
                    analysis = json.loads(match.group(0))
                except:
                    # Fall back to a simplified analysis
                    analysis = {
                        "question_type": "factual",
                        "complexity": 3,
                        "required_tools": ["web_search"],
                        "information_sources": ["web"]
                    }
            else:
                # If no JSON-like content found, use default
                analysis = {
                    "question_type": "factual",
                    "complexity": 3,
                    "required_tools": ["web_search"],
                    "information_sources": ["web"]
                }
        
        return {
            **state,
            "analysis": analysis
        }
    except Exception as e:
        logger.error(f"Error analyzing question: {str(e)}")
        return {
            **state,
            "analysis": {
                "question_type": "factual",
                "complexity": 3,
                "required_tools": ["web_search"],
                "information_sources": ["web"]
            },
            "error": f"Error during question analysis: {str(e)}"
        }

def create_plan(state: AgentState, llm) -> AgentState:
    """Create a plan for answering the question"""
    try:
        template = """

        You're an expert planner for answering questions. Based on the analysis, create a step-by-step plan for answering this question.

        

        Question: {question}

        Analysis: {analysis}

        

        Format your response as a JSON list of steps, where each step has:

        1. step_number: Sequential number of the step

        2. description: What should be done

        3. tool: Tool to use (web_search, content_extraction, or null if no tool needed)

        4. tool_input: Parameters for the tool (e.g., search query or URL)

        

        Ensure your response is valid JSON.

        """
        
        prompt = ChatPromptTemplate.from_messages([
            ("system", template),
            ("human", "Create a plan for answering this question.")
        ])
        
        chain = prompt | llm | StrOutputParser()
        
        plan_text = chain.invoke({
            "question": state["question"],
            "analysis": json.dumps(state["analysis"])
        })
        
        # Parse JSON response, with error handling
        try:
            plan = json.loads(plan_text)
            if not isinstance(plan, list):
                raise ValueError("Plan must be a list")
        except (json.JSONDecodeError, ValueError):
            # Extract JSON-like array content
            match = re.search(r'\[.*\]', plan_text, re.DOTALL)
            if match:
                try:
                    plan = json.loads(match.group(0))
                except:
                    # Fall back to a simplified plan
                    plan = create_fallback_plan(state)
            else:
                plan = create_fallback_plan(state)
        
        return {
            **state,
            "plan": plan,
            "current_step": 0,
            "tool_results": []
        }
    except Exception as e:
        logger.error(f"Error creating plan: {str(e)}")
        return {
            **state,
            "plan": create_fallback_plan(state),
            "current_step": 0,
            "tool_results": [],
            "error": f"Error during plan creation: {str(e)}"
        }

def create_fallback_plan(state: AgentState) -> List[Dict[str, Any]]:
    """Create a simple fallback plan when the main planning fails"""
    tools = state.get("analysis", {}).get("required_tools", ["web_search"])
    
    plan = [
        {
            "step_number": 1,
            "description": "Search for information about the question",
            "tool": "web_search",
            "tool_input": {"query": state["question"]}
        },
        {
            "step_number": 2,
            "description": "Formulate an answer based on search results",
            "tool": None,
            "tool_input": None
        }
    ]
    
    # Add content extraction step if it might be useful
    if "web_search" in tools:
        plan.insert(1, {
            "step_number": 2,
            "description": "Extract content from the most relevant search result URL if available",
            "tool": "content_extraction",
            "tool_input": {"url_from_search_results": True}
        })
        # Update the last step number
        plan[-1]["step_number"] = 3
    
    return plan

def execute_tool(state: AgentState) -> AgentState:
    """Execute the current tool in the plan"""
    # Initialize variables at the top for use in except blocks
    current_step = state.get("current_step", 0)
    plan = state.get("plan", [])
    tool_name = "unknown"
    tool_input = {}
    
    try:
        # Validate state
        if not isinstance(state, dict):
            raise ValueError(f"Invalid state type: {type(state)}. Expected dict.")
        
        # Check if we've reached the end of the plan
        if current_step >= len(plan):
            logger.info("Execute tool: reached end of plan")
            return {
                **state,
                "current_step": current_step + 1
            }
        
        # Get step details with validation
        step = plan[current_step]
        if not isinstance(step, dict):
            logger.error(f"Invalid step format at position {current_step}: {type(step)}")
            raise ValueError(f"Invalid step format at position {current_step}")
            
        tool_name = step.get("tool")
        tool_input = step.get("tool_input", {})
        
        # Skip if no tool is specified
        if not tool_name:
            logger.info(f"No tool specified for step {current_step}, skipping")
            return {
                **state,
                "current_step": current_step + 1
            }
        
        logger.info(f"Executing tool '{tool_name}' for step {current_step}")
        
        # Execute the appropriate tool with specific error handling for each tool type
        result = {"tool_name": tool_name, "success": False, "error": None}
        
        if tool_name == "web_search":
            try:
                # Execute web search with input validation
                query = tool_input.get("query", state["question"])
                if not query or not isinstance(query, str):
                    raise ValueError("Invalid search query: must be a non-empty string")
                
                # Truncate overly long queries
                if len(query) > 500:
                    logger.warning(f"Search query too long ({len(query)} chars), truncating to 500 chars")
                    query = query[:497] + "..."
                
                search_tool = WebSearchTool()
                search_results = search_tool.search(query)
                
                # Validate search results
                if not isinstance(search_results, list):
                    logger.warning(f"Invalid search results type: {type(search_results)}")
                    search_results = []
                
                result = {
                    "tool_name": tool_name,
                    "success": len(search_results) > 0,
                    "query": query,
                    "results": search_results,
                    "error": None if search_results else "No search results found"
                }
                
                # Check if search results indicate an API error
                if any("API key" in result.get("title", "") or "API key" in result.get("snippet", "") 
                      for result in search_results):
                    logger.error("Search results indicate API key issue")
                    result["error"] = "Search API key error detected in results"
                    result["success"] = False
                
            except ConnectionError as conn_err:
                logger.error(f"Connection error in web search: {str(conn_err)}")
                result = {
                    "tool_name": tool_name,
                    "success": False,
                    "query": tool_input.get("query", state["question"]),
                    "results": [],
                    "error": f"Connection error: {str(conn_err)}"
                }
            except TimeoutError as timeout_err:
                logger.error(f"Timeout error in web search: {str(timeout_err)}")
                result = {
                    "tool_name": tool_name,
                    "success": False,
                    "query": tool_input.get("query", state["question"]),
                    "results": [],
                    "error": f"Search timed out: {str(timeout_err)}"
                }
            except Exception as search_err:
                logger.error(f"Error in web search: {str(search_err)}")
                result = {
                    "tool_name": tool_name,
                    "success": False,
                    "query": tool_input.get("query", state["question"]),
                    "results": [],
                    "error": f"Search error: {str(search_err)}"
                }
        
        elif tool_name == "content_extraction":
            try:
                # Extract content from URL with validation
                url = tool_input.get("url")
                
                # If URL is not directly specified, get it from search results
                if not url and tool_input.get("url_from_search_results", False):
                    # Find the most recent web_search results
                    for past_result in reversed(state.get("tool_results", [])):
                        if past_result.get("tool_name") == "web_search" and past_result.get("success"):
                            search_results = past_result.get("results", [])
                            if search_results:
                                url = search_results[0].get("link")
                                break
                
                # Validate URL
                if not url or not isinstance(url, str):
                    logger.warning("No valid URL found for content extraction")
                    result = {
                        "tool_name": tool_name,
                        "success": False,
                        "error": "No valid URL provided or found in search results"
                    }
                elif not url.startswith(("http://", "https://")):
                    logger.warning(f"Invalid URL format: {url}")
                    result = {
                        "tool_name": tool_name,
                        "success": False,
                        "url": url,
                        "error": "Invalid URL format: URL must start with http:// or https://"
                    }
                else:
                    extractor = ContentExtractor()
                    content = extractor.extract_content(url)
                    
                    result = {
                        "tool_name": tool_name,
                        "success": content.get("success", False),
                        "url": url,
                        "content": content,
                        "error": content.get("error")
                    }
            except ConnectionError as conn_err:
                logger.error(f"Connection error in content extraction: {str(conn_err)}")
                result = {
                    "tool_name": tool_name,
                    "success": False,
                    "url": tool_input.get("url", "unknown"),
                    "error": f"Connection error during content extraction: {str(conn_err)}"
                }
            except TimeoutError as timeout_err:
                logger.error(f"Timeout error in content extraction: {str(timeout_err)}")
                result = {
                    "tool_name": tool_name,
                    "success": False,
                    "url": tool_input.get("url", "unknown"),
                    "error": f"Content extraction timed out: {str(timeout_err)}"
                }
            except Exception as extract_err:
                logger.error(f"Error in content extraction: {str(extract_err)}")
                result = {
                    "tool_name": tool_name,
                    "success": False,
                    "url": tool_input.get("url", "unknown"),
                    "error": f"Content extraction error: {str(extract_err)}"
                }
        
        else:
            # Unknown tool
            logger.warning(f"Unknown tool requested: {tool_name}")
            result = {
                "tool_name": tool_name,
                "success": False,
                "error": f"Unknown tool: {tool_name}"
            }
        
        # Update state with tool results
        tool_results = state.get("tool_results", []) or []
        
        # Log tool execution result
        if result.get("success"):
            logger.info(f"Tool '{tool_name}' executed successfully")
        else:
            logger.warning(f"Tool '{tool_name}' execution failed: {result.get('error')}")
        
        return {
            **state,
            "tool_results": tool_results + [result],
            "current_step": current_step + 1
        }
    
    except Exception as e:
        error_type = type(e).__name__
        logger.error(f"Error executing tool '{tool_name}': {error_type}: {str(e)}")
        logger.error(traceback.format_exc())
        
        # Update state with error
        tool_results = state.get("tool_results", []) or []
        
        # Provide specific error message based on error type
        error_message = str(e)
        if "ConnectionError" in error_type or "requests.exceptions" in error_type:
            error_message = f"Connection error during tool execution: {str(e)}. This might be due to network issues or the service being unavailable."
        elif "TimeoutError" in error_type:
            error_message = f"Tool execution timed out: {str(e)}. The operation took too long to complete."
        elif "JSONDecodeError" in error_type:
            error_message = f"Error parsing response data: {str(e)}. The service returned an unexpected format."
        elif "KeyError" in error_type or "AttributeError" in error_type:
            error_message = f"Missing or invalid data during tool execution: {str(e)}. This might be due to incomplete or malformed data."
        elif "AuthenticationError" in error_type or "api key" in str(e).lower():
            error_message = f"Authentication error during tool execution: {str(e)}. This might be due to invalid API credentials."
        
        return {
            **state,
            "tool_results": tool_results + [{
                "tool_name": tool_name,
                "success": False,
                "error": error_message,
                "error_type": error_type
            }],
            "current_step": current_step + 1,
            "error": f"Error during tool execution: {error_message}"
        }
    """

    GAIA (Grounded AI Assistant) agent with web search and content extraction capabilities.

    This class provides a simplified interface for the app.py file to interact with.

    """
    
    def __init__(self):
        """Initialize the GAIA agent with simplified configuration"""
        self.memory = SimpleMemory()
        logger.info("GAIA Agent initialized")
    
    def __call__(self, question: str) -> str:
        """

        Process a question and generate an answer.

        Compatible with the interface expected by app.py.

        

        Args:

            question (str): The question to process

            

        Returns:

            str: The answer to the question

        """
        return self.process_question(question)
    
    def process_question(self, question: str) -> str:
        """

        Process a question and generate an answer.

        

        Args:

            question (str): The question to process

            

        Returns:

            str: The answer to the question

        """
        # Generate a cache key for this question
        cache_key = f"question_{hashlib.md5(question.encode()).hexdigest()}"
        
        # Check if we have a cached result
        cached_answer = self.memory.get_cached_result(cache_key)
        if cached_answer:
            logger.info(f"Using cached answer for question: {question[:50]}...")
            return cached_answer
        
        try:
            # Initialize LLM with error handling
            if OPENAI_API_KEY:
                llm = ChatOpenAI(
                    temperature=0,
                    model="gpt-3.5-turbo",
                    api_key=OPENAI_API_KEY
                )
                
                # Process with LangGraph
                answer = self._process_with_langgraph(question, llm)
            else:
                # Fallback to simple pattern-matching responses when LLM is not available
                logger.warning("Using fallback mode (no OpenAI API key provided)")
                answer = self._fallback_processing(question)
            
            # Cache the result
            self.memory.cache_result(cache_key, answer)
            
            return answer
            
        except Exception as e:
            logger.error(f"Error processing question: {str(e)}")
            logger.error(traceback.format_exc())
            
            return f"I apologize, but I encountered an error while processing your question: {str(e)}"
    
    def _process_with_langgraph(self, question: str, llm) -> str:
        """Process question using LangGraph workflow"""
        try:
            # Define state transitions
            def should_continue(state: AgentState) -> Literal["continue", "complete"]:
                """Determine if the agent should continue or is finished"""
                current_step = state.get("current_step", 0)
                plan = state.get("plan", [])
                
                # Check if we still have steps to execute
                if current_step is None or plan is None:
                    return "complete"
                
                if current_step < len(plan):
                    return "continue"
                else:
                    return "complete"
            
            # Create the graph
            workflow = StateGraph(AgentState)
            
            # Add nodes
            workflow.add_node("analyze", analyze_question)
            workflow.add_node("create_plan", create_plan)
            workflow.add_node("execute_tool", execute_tool)
            workflow.add_node("formulate_answer", formulate_answer)
            
            # Add edges
            workflow.add_edge("analyze", "create_plan")
            workflow.add_edge("create_plan", "execute_tool")
            workflow.add_edge("execute_tool", should_continue)
            workflow.add_conditional_edges(
                "execute_tool",
                should_continue,
                {
                    "continue": "execute_tool",
                    "complete": "formulate_answer"
                }
            )
            workflow.add_edge("formulate_answer", END)
            
            # Set entry point
            workflow.set_entry_point("analyze")
            
            # Compile the graph
            app = workflow.compile()
            
            # Run the graph
            state = {
                "question": question,
                "tool_results": []
            }
            
            result = app.invoke({
                **state,
                "llm": llm
            })
            
            # Return the answer or an error message
            if "answer" in result and result["answer"]:
                return result["answer"]
            elif "error" in result and result["error"]:
                return f"I encountered an error: {result['error']}"
            else:
                return "I was unable to generate an answer based on the available information."
            
        except Exception as e:
            logger.error(f"Error in LangGraph processing: {str(e)}")
            logger.error(traceback.format_exc())
            return f"I encountered an error while processing your question: {str(e)}"
    
    def _fallback_processing(self, question: str) -> str:
        """Simple fallback implementation when LLM is not available"""
        try:
            # Simple pattern matching for some question types
            if "how" in question.lower():
                answer = f"To address '{question.strip('?')}', I would recommend following these steps: 1) Understand the core concepts, 2) Apply a structured approach, 3) Evaluate results, and 4) Refine as needed. Without being able to access external knowledge at the moment, this is a general framework for addressing how-to questions."
            elif "what" in question.lower():
                answer = f"Regarding '{question.strip('?')}', this typically involves understanding several key factors. While I don't have access to external knowledge at the moment, this type of question usually requires defining terms, establishing context, and examining relevant concepts."
            elif "why" in question.lower():
                answer = f"The question '{question.strip('?')}' relates to causality and explanation. Such questions typically involve understanding underlying mechanisms, historical context, and logical relationships between factors."
            else:
                # Try a web search if available
                try:
                    search_tool = WebSearchTool()
                    search_results = search_tool.search(question)
                    
                    if search_results and search_results[0].get("snippet"):
                        snippet = search_results[0]["snippet"]
                        answer = f"Based on available information: {snippet}\n\nPlease note that without access to a language model, I can only provide this basic search result."
                    else:
                        answer = f"I'm sorry, but I cannot provide a comprehensive answer to '{question}' at this moment due to limited access to external knowledge and language model capabilities."
                except Exception as search_err:
                    logger.error(f"Error in fallback search: {str(search_err)}")
                    answer = f"I'm sorry, but I cannot provide a comprehensive answer to '{question}' at this moment due to limited access to external knowledge and language model capabilities."
            
            return answer
        except Exception as e:
            logger.error(f"Error in fallback processing: {str(e)}")
            return f"I apologize, but I'm currently unable to process your question due to system limitations."
    
    def query(self, question: str) -> Dict[str, Any]:
        """

        Query the agent with a question to get an answer with metadata.

        

        Args:

            question (str): The question to answer

            

        Returns:

            Dict[str, Any]: Dictionary containing the answer and metadata

        """
        try:
            # Track timing
            start_time = time.time()
            
            # Process the question
            answer = self.process_question(question)
            
            # Calculate processing time
            processing_time = time.time() - start_time
            
            # Return result with metadata
            return {
                "question": question,
                "answer": answer,
                "processing_time": processing_time,
                "timestamp": time.time(),
                "status": "success"
            }
        except Exception as e:
            logger.error(f"Error in query: {str(e)}")
            
            return {
                "question": question,
                "answer": f"Error processing query: {str(e)}",
                "processing_time": time.time() - start_time,
                "timestamp": time.time(),
                "status": "error",
                "error": str(e)
            }
    
    def clear_memory(self):
        """Clear the agent's memory"""
        self.memory.clear()
        logger.info("Agent memory cleared")