File size: 11,073 Bytes
7da0087
 
0c64865
 
7da0087
 
 
0688ecc
47bf6c8
0c64865
 
47bf6c8
7da0087
0c64865
a3fb832
7da0087
 
 
 
 
 
0c64865
528d2e7
0c64865
 
7da0087
 
0c64865
7da0087
 
0c64865
7da0087
 
 
d39f15e
0688ecc
47bf6c8
 
 
 
 
 
0c64865
0688ecc
47bf6c8
0688ecc
 
 
 
 
 
47bf6c8
0c64865
 
 
47bf6c8
 
 
0c64865
 
 
 
 
 
 
 
 
 
47bf6c8
 
0c64865
 
 
 
 
 
47bf6c8
 
 
 
 
 
0c64865
 
 
47bf6c8
 
 
 
 
0c64865
 
 
47bf6c8
 
 
 
 
0c64865
 
47bf6c8
 
0c64865
47bf6c8
 
0c64865
47bf6c8
 
 
 
 
 
 
0c64865
 
47bf6c8
 
0c64865
 
 
47bf6c8
0c64865
47bf6c8
0c64865
 
47bf6c8
 
 
 
 
 
 
 
0c64865
47bf6c8
 
 
 
 
 
 
 
 
 
0c64865
47bf6c8
 
0c64865
47bf6c8
 
0c64865
 
 
 
47bf6c8
0c64865
 
47bf6c8
 
 
 
0c64865
 
 
47bf6c8
 
 
 
 
0c64865
 
 
 
47bf6c8
 
0c64865
47bf6c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c64865
47bf6c8
 
 
 
0c64865
47bf6c8
 
 
 
0c64865
47bf6c8
 
 
 
 
0c64865
47bf6c8
 
 
0c64865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0688ecc
d39f15e
0688ecc
 
0c64865
 
 
0688ecc
 
 
 
0c64865
 
0688ecc
0c64865
 
7da0087
 
0c64865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import gradio as gr
import requests
import pandas as pd
import logging
import time
import traceback
from typing import Dict, Any, Optional, Tuple, List, Union

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Import our GAIA Agent ---
from gaia_agent import GAIAAgent

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("gaia_evaluation")

# Initialize the GAIA Agent
def initialize_agent():
    try:
        agent = GAIAAgent()
        logger.info("GAIA Agent initialized successfully")
        return agent
    except Exception as e:
        logger.error(f"Error initializing GAIA Agent: {e}")
        logger.error(traceback.format_exc())
        return None

# Important: Match the exact signature from the template
def run_and_submit_all(profile=None):
    """

    Fetches all questions, runs the GAIA Agent on them, submits all answers,

    and displays the results.

    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID", "")

    # Check if user is signed in
    if profile:
        if hasattr(profile, 'username'):
            username = profile.username
            logger.info(f"User logged in: {username}")
        else:
            username = str(profile)
            logger.info(f"Using provided username: {username}")
    else:
        logger.warning("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = initialize_agent()
        if agent is None:
            error_msg = "Error initializing GAIA Agent. Check logs for details."
            logger.error(error_msg)
            return error_msg, None
    except Exception as e:
        error_msg = f"Error instantiating agent: {e}"
        logger.error(error_msg)
        return error_msg, None
        
    # Link to the code repository in Hugging Face Space
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    logger.info(f"Using agent code URL: {agent_code}")

    # 2. Fetch Questions
    logger.info(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             logger.warning("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        logger.info(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        error_msg = f"Error fetching questions: {e}"
        logger.error(error_msg)
        return error_msg, None
    except requests.exceptions.JSONDecodeError as e:
         error_msg = f"Error decoding JSON response from questions endpoint: {e}"
         logger.error(f"{error_msg}\nResponse text: {response.text[:500]}")
         return error_msg, None
    except Exception as e:
        error_msg = f"An unexpected error occurred fetching questions: {e}"
        logger.error(error_msg)
        logger.error(traceback.format_exc())
        return error_msg, None

    # 3. Run the GAIA Agent on all questions
    results_log = []
    answers_payload = []
    logger.info(f"Running agent on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data):
        # Extract question information
        task_id = item.get("task_id", item.get("id", f"q{i+1}"))
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            logger.warning(f"Skipping item with missing task_id or question: {item}")
            continue
            
        logger.info(f"Processing question {i+1}/{len(questions_data)}: {question_text[:50]}...")
        start_time = time.time()
        
        try:
            # Process the question with the GAIA Agent
            submitted_answer = agent.process_question(question_text)
            processing_time = time.time() - start_time
            
            # Add to submission payload
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            
            # Store for results display
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer,
                "Processing Time": f"{processing_time:.2f}s",
                "Status": "Success"
            })
            
            logger.info(f"Question {i+1} processed successfully in {processing_time:.2f}s")
            
        except Exception as e:
            error_msg = f"Error running agent on task {task_id}: {e}"
            logger.error(error_msg)
            logger.error(traceback.format_exc())
            
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}",
                "Processing Time": f"{time.time() - start_time:.2f}s",
                "Status": "Error"
            })

    # Check if we have answers to submit
    if not answers_payload:
        logger.warning("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {
        "username": username.strip(), 
        "agent_code": agent_code, 
        "answers": answers_payload
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    logger.info(status_update)

    # 5. Submit
    logger.info(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        
        # Extract results data
        correct_count = result_data.get("correct_count", 0)
        total_attempted = result_data.get("total_attempted", 0)
        score = result_data.get("score", "N/A")
        
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username', username)}\n"
            f"Overall Score: {score}% "
            f"({correct_count}/{total_attempted} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        logger.info("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        logger.error(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        logger.error(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        logger.error(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        logger.error(status_message)
        logger.error(traceback.format_exc())
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# GAIA Agent Evaluation Runner")
    gr.Markdown(
        """

        **Instructions:**



        1. Log in to your Hugging Face account using the button below. This uses your HF username for submission.

        2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the GAIA agent, submit answers, and see the score.



        ---

        **Note:** Running the evaluation may take some time as the agent processes all questions. Please be patient.

        """
    )

    # Create login button
    login_btn = gr.LoginButton()
    
    # Output text and result areas
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    # Run button
    run_button = gr.Button("Run Evaluation & Submit All Answers")

    # Set up event handler (simplified)
    run_button.click(
        fn=run_and_submit_all,
        inputs=login_btn,  # Connect login button directly
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for GAIA Agent Evaluation...")
    # Determine launch parameters based on environment
    is_running_in_space = bool(space_host_startup and space_id_startup)
    
    if is_running_in_space:
        # Production settings for Hugging Face Space
        demo.launch(
            debug=False,
            share=False,
            server_name="0.0.0.0"
        )
    else:
        # Development settings for local testing
        demo.launch(
            debug=True,
            share=False
        )