File size: 7,148 Bytes
c922f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# GAIA Agent Deployment Guide
This document provides instructions for deploying the GAIA agent in various environments, from local development to production settings.
## Prerequisites
Before deploying the GAIA agent, ensure you have:
1. Python 3.8 or higher installed
2. All required dependencies installed
3. API keys for any external services (OpenAI, Serper, Supabase, etc.)
4. Sufficient resources for your expected workload
## Local Deployment
### Installation
1. Clone the repository:
```bash
git clone https://github.com/yourusername/gaia-agent.git
cd gaia-agent
```
2. Create a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
3. Install dependencies:
```bash
pip install -r requirements.txt
```
4. Create a `.env` file with your configuration:
```
OPENAI_API_KEY=your-openai-api-key
SERPER_API_KEY=your-serper-api-key
SUPABASE_URL=https://your-project-url.supabase.co
SUPABASE_KEY=your-supabase-api-key
```
5. Run the application:
```bash
python app.py
```
### Testing
Before deploying to production, run the test suite to ensure everything is working correctly:
```bash
# Run all tests
python -m unittest discover tests
# Run benchmark tests
python -m tests.benchmark --output benchmark_results.json
```
## Deployment Options
### Hugging Face Spaces
The GAIA agent is designed to be easily deployed to Hugging Face Spaces:
1. Create a new Space on Hugging Face:
- Go to https://huggingface.co/spaces
- Click "Create new Space"
- Select "Gradio" as the SDK
- Choose a name for your Space
2. Configure your Space:
- Add your API keys as secrets in the Space settings
- Set the Python version to 3.8 or higher
3. Push your code to the Space:
```bash
git remote add space https://huggingface.co/spaces/yourusername/your-space-name
git push space main
```
4. Your agent will be automatically deployed and available at `https://huggingface.co/spaces/yourusername/your-space-name`
### Docker Deployment
For containerized deployment, you can use Docker:
1. Create a Dockerfile:
```dockerfile
FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
CMD ["python", "app.py"]
```
2. Build the Docker image:
```bash
docker build -t gaia-agent .
```
3. Run the container:
```bash
docker run -p 7860:7860 --env-file .env gaia-agent
```
### Cloud Deployment
#### AWS Elastic Beanstalk
1. Install the EB CLI:
```bash
pip install awsebcli
```
2. Initialize your EB application:
```bash
eb init -p python-3.8 gaia-agent
```
3. Create an environment:
```bash
eb create gaia-agent-env
```
4. Configure environment variables:
```bash
eb setenv OPENAI_API_KEY=your-openai-api-key SERPER_API_KEY=your-serper-api-key
```
5. Deploy your application:
```bash
eb deploy
```
#### Google Cloud Run
1. Build and push your Docker image to Google Container Registry:
```bash
gcloud builds submit --tag gcr.io/your-project-id/gaia-agent
```
2. Deploy to Cloud Run:
```bash
gcloud run deploy gaia-agent \
--image gcr.io/your-project-id/gaia-agent \
--platform managed \
--set-env-vars OPENAI_API_KEY=your-openai-api-key,SERPER_API_KEY=your-serper-api-key
```
## Scaling Considerations
### Memory Usage
The GAIA agent can be memory-intensive, especially when processing complex questions or using large language models. Consider the following:
- Monitor memory usage during benchmark testing
- Adjust `max_tokens` and other model parameters to control memory usage
- Consider using a memory cache for frequently asked questions
### API Rate Limits
Be aware of rate limits for external APIs:
- OpenAI has rate limits based on your subscription tier
- Serper and other search APIs typically have daily or monthly quotas
- Implement retry logic with exponential backoff for rate limit errors
### Cost Management
Using external APIs can incur costs:
- Monitor your API usage and costs
- Consider caching results to reduce API calls
- Use smaller or less expensive models for simpler tasks
## Production Best Practices
### Logging
Implement comprehensive logging:
```python
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
filename='gaia_agent.log'
)
```
### Monitoring
Set up monitoring for:
- API response times
- Error rates
- Memory and CPU usage
- Cost metrics
### Security
Protect sensitive information:
- Never hardcode API keys in your code
- Use environment variables or a secure secrets manager
- Implement proper authentication for your API endpoints
- Validate and sanitize all user inputs
### Backup and Recovery
Implement backup and recovery procedures:
- Regularly backup your Supabase database
- Create snapshots of your deployment environment
- Document recovery procedures
## Continuous Integration/Continuous Deployment (CI/CD)
Set up CI/CD pipelines to automate testing and deployment:
### GitHub Actions Example
Create a `.github/workflows/main.yml` file:
```yaml
name: CI/CD Pipeline
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.9'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
- name: Run tests
run: |
python -m unittest discover tests
deploy:
needs: test
if: github.event_name == 'push' && github.ref == 'refs/heads/main'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Deploy to Hugging Face Spaces
uses: huggingface/huggingface-spaces-deploy-action@main
with:
space_id: ${{ secrets.SPACE_ID }}
token: ${{ secrets.HF_TOKEN }}
```
## Troubleshooting
### Common Issues
1. **API Key Errors**:
- Ensure all API keys are correctly set in your environment variables
- Check for typos or trailing spaces in your API keys
2. **Memory Issues**:
- Reduce the `max_tokens` parameter in your model configuration
- Implement memory cleanup after processing each question
3. **Timeout Errors**:
- Increase the timeout values in your configuration
- Optimize your agent's workflow to reduce processing time
4. **Rate Limit Errors**:
- Implement retry logic with exponential backoff
- Consider upgrading your API subscription tier
### Getting Help
If you encounter issues not covered in this guide:
1. Check the project's GitHub issues for similar problems
2. Consult the documentation for the specific components (LangChain, LangGraph, etc.)
3. Reach out to the community for assistance
## Next Steps
For usage examples, see [Usage Examples](../usage/examples.md).
For configuration options, see [Configuration Guide](../development/configuration.md). |