File size: 10,920 Bytes
c922f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# Deploying GAIA on Hugging Face Spaces
This guide provides step-by-step instructions for deploying the GAIA agent on Hugging Face Spaces, making it accessible as a web application to users worldwide.
## Why Deploy on Hugging Face Spaces?
Hugging Face Spaces offers several advantages for deploying GAIA:
1. **Free Hosting**: Basic deployment is free with reasonable usage limits
2. **Easy Sharing**: Public URL that can be shared with anyone
3. **Version Control**: Built-in Git integration
4. **Secrets Management**: Secure storage for API keys
5. **Community**: Integration with the broader AI community
6. **Customization**: Support for custom domains and branding
## Prerequisites
Before deploying to Hugging Face Spaces, you'll need:
1. **Hugging Face Account**: Create an account at [huggingface.co](https://huggingface.co/join)
2. **API Keys**: Gather all necessary API keys (OpenAI, Serper, etc.)
3. **GAIA Repository**: A local copy of the GAIA repository
4. **Git**: For pushing your code to Hugging Face
## Deployment Steps
### Step 1: Prepare Your Repository
1. Clone the GAIA repository if you haven't already:
```bash
git clone https://github.com/your-organization/gaia.git
cd gaia
```
2. Create a specific `requirements.txt` file for Hugging Face deployment:
```bash
# Copy the main requirements
cp requirements.txt requirements-hf.txt
# Edit to add Gradio (if not already included)
echo "gradio>=4.0.0" >> requirements-hf.txt
# Remove any development-specific packages
# Edit requirements-hf.txt to remove unnecessary packages
```
3. Create a Hugging Face-specific `app.py` or modify the existing one:
```python
import os
import gradio as gr
from src.gaia.agent import GaiaAgent
from src.gaia.config import Configuration
# Initialize configuration
config = Configuration()
# Set default values for Hugging Face deployment
config.set("demo_mode", True)
config.set("models.default", "gpt-3.5-turbo") # Use cheaper model by default
# Initialize the agent
agent = GaiaAgent(config=config)
# Define the Gradio interface
def process_query(query, history):
try:
response = agent.run(query)
return response
except Exception as e:
return f"Error: {str(e)}"
# Create the gradio app
demo = gr.ChatInterface(
fn=process_query,
title="GAIA - Grounded AI Alignment Agent",
description="Ask any question and GAIA will search for information to provide a grounded answer.",
examples=[
"What is quantum computing?",
"Explain the theory of relativity in simple terms.",
"What are the latest developments in AI safety?"
],
theme="huggingface"
)
# Launch the app
if __name__ == "__main__":
demo.launch()
```
### Step 2: Create a Space on Hugging Face
1. Log in to Hugging Face and go to [huggingface.co/spaces](https://huggingface.co/spaces)
2. Click on "Create new Space"
3. Fill in the details:
- **Owner**: Your username or organization
- **Space name**: Choose a unique name (e.g., "gaia-agent")
- **License**: Choose an appropriate license (e.g., MIT)
- **SDK**: Choose "Gradio"
- **Space hardware**: Start with "CPU basic" (free tier)
- **Make this Space private**: Optional, if you want to restrict access
4. Click "Create Space"
### Step 3: Configure the Repository
1. In your local GAIA directory, add the Hugging Face Space as a remote:
```bash
git remote add space https://huggingface.co/spaces/your-username/gaia-agent
```
2. Create a `.gitignore` file to exclude unnecessary files:
```bash
cat > .gitignore << EOF
# Python
__pycache__/
*.py[cod]
*$py.class
*.so
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
# Virtual Environment
venv/
ENV/
env/
# Local configuration
.env
config.json
# Logs
logs/
*.log
# Results
results/
# IDE files
.idea/
.vscode/
*.swp
*.swo
EOF
```
3. Create a `README.md` file for your Space:
```bash
cat > README.md << EOF
# GAIA Agent
GAIA (Grounded AI Alignment) is an AI agent designed to answer questions with grounded, factual information.
## Features
- Web search capabilities using multiple providers
- Academic research integration
- Reasoning tools for complex problems
- Memory system for context-aware responses
## Usage
Simply type your question in the input box and click "Submit" to get a response from GAIA.
## Examples
- "What is quantum computing?"
- "Explain the theory of relativity in simple terms."
- "What are the latest developments in AI safety?"
## About
GAIA is built with Python using LangChain, LangGraph, and GPT-4. It leverages various APIs to provide accurate and up-to-date information.
EOF
```
### Step 4: Create a Requirements File for Hugging Face
Create or modify the `requirements.txt` file to include only the necessary packages:
```bash
cat > requirements.txt << EOF
gradio>=4.0.0
langchain>=0.0.267
langgraph>=0.0.15
openai>=1.1.1
tiktoken>=0.5.1
supabase>=2.0.3
requests>=2.31.0
python-dotenv>=1.0.0
EOF
```
### Step 5: Set Up Environment Variables
In your Hugging Face Space:
1. Go to the Settings tab of your Space
2. Scroll down to the "Repository secrets" section
3. Add your API keys and configuration as secrets:
- `OPENAI_API_KEY`: Your OpenAI API key
- `SERPER_API_KEY`: Your Serper API key (if used)
- `PERPLEXITY_API_KEY`: Your Perplexity API key (if used)
- Any other necessary API keys or configuration values
### Step 6: Push Your Code to Hugging Face
Commit and push your code to the Hugging Face Space:
```bash
# Add your files
git add app.py requirements.txt README.md .gitignore src/
# Commit the changes
git commit -m "Initial GAIA deployment on Hugging Face"
# Push to Hugging Face
git push space main
```
After pushing, Hugging Face will automatically build and deploy your application. This may take a few minutes.
### Step 7: Test Your Deployment
1. Once the build is complete, navigate to your Space's URL: `https://huggingface.co/spaces/your-username/gaia-agent`
2. Test the application by asking a few questions
3. Check the Space logs for any errors or issues:
- Go to the "Settings" tab
- Scroll down to "Factory reboot" section
- Click on "View logs"
## Advanced Configuration
### Custom Domain
To use a custom domain with your Space:
1. Go to the "Settings" tab of your Space
2. Scroll down to the "Custom domain" section
3. Enter your domain name (e.g., `gaia.yourdomain.com`)
4. Follow the instructions to set up DNS records
### Upgrading Hardware
For better performance or to handle more traffic:
1. Go to the "Settings" tab of your Space
2. Scroll down to the "Space hardware" section
3. Choose a higher tier (note: this will incur costs)
- CPU Upgrade: For faster processing
- GPU: For model hosting or intensive processing
- Memory Boost: For handling larger datasets
### Persistent Storage
To enable persistent storage for your Space:
1. Go to the "Settings" tab of your Space
2. Scroll down to the "Persistent storage" section
3. Enable persistent storage (up to 10GB for free)
This allows you to store data that persists between restarts, such as logs or cached results.
### Authentication
To restrict access to authenticated users:
1. In your `app.py`, modify the launch parameters:
```python
demo.launch(auth=("username", "password"))
```
2. Or for more flexible authentication:
```python
demo.launch(auth_message="Enter GAIA password",
auth=lambda u, p: p == os.environ.get("GAIA_PASSWORD", "default_password"))
```
3. Add the `GAIA_PASSWORD` environment variable in your Space settings
### Scheduled Restarts
For long-running deployments, scheduled restarts can help maintain stability:
1. Go to the "Settings" tab of your Space
2. Scroll down to the "Factory reboot" section
3. Set a schedule for automatic reboots (e.g., daily or weekly)
## Optimizing for Hugging Face Spaces
### Reducing Startup Time
To reduce startup time and improve user experience:
1. Lazy-load components when possible:
```python
def load_agent():
if not hasattr(load_agent, "agent"):
load_agent.agent = GaiaAgent(config=config)
return load_agent.agent
def process_query(query, history):
agent = load_agent()
return agent.run(query)
```
2. Use caching for expensive operations:
```python
import functools
@functools.lru_cache(maxsize=100)
def get_cached_result(query):
# Expensive operation
return result
```
### Memory Usage Optimization
To stay within Hugging Face's memory limits:
1. Limit model usage:
```python
config.set("models.default", "gpt-3.5-turbo") # Uses less memory than GPT-4
```
2. Implement efficient memory management:
```python
# Clear working memory after each query
def process_query(query, history):
agent = load_agent()
result = agent.run(query)
agent.reset(clear_memory=False) # Clear working memory but keep conversation history
return result
```
3. Disable memory-intensive features in the configuration:
```python
config.set("memory.supabase.enabled", False) # Use simpler memory system
config.set("tools.image_analysis.enabled", False) # Disable memory-intensive tools
```
## Monitoring and Maintenance
### Monitoring Usage
Monitor your Space's usage and performance:
1. Go to the "Settings" tab of your Space
2. Scroll down to the "Metrics" section
3. View CPU, memory, and disk usage over time
### Updating Your Deployment
To update your GAIA deployment:
1. Make changes to your local repository
2. Commit and push to your Hugging Face Space:
```bash
git add .
git commit -m "Update GAIA deployment"
git push space main
```
### Handling Errors
If you encounter errors in your deployment:
1. Check the Space logs for error messages
2. Implement better error handling in your code:
```python
def process_query(query, history):
try:
agent = load_agent()
return agent.run(query)
except Exception as e:
# Log the error
print(f"Error processing query: {str(e)}")
# Return a user-friendly message
return "I'm having trouble processing your request. Please try again or ask a different question."
```
3. Set up monitoring to be notified of errors
## Conclusion
You now have GAIA deployed on Hugging Face Spaces, making it accessible as a web application. This allows you to share your agent with others, collaborate with the community, and benefit from Hugging Face's infrastructure.
For more advanced deployments or custom integrations, consider exploring:
- [Local Deployment Guide](local.md) for self-hosting options
- [API Documentation](../api/agent.md) for programmatic integrations
- [Hugging Face Spaces Documentation](https://huggingface.co/docs/hub/spaces) for more Spaces features
If you encounter any issues or have questions, refer to the [troubleshooting section](#handling-errors) or create an issue on the project's GitHub repository. |