File size: 8,920 Bytes
f0396fb
 
 
 
a529285
f0396fb
 
 
 
 
 
 
 
 
 
 
 
a529285
 
 
 
f0396fb
 
 
 
 
 
a529285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0396fb
 
a529285
f0396fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a529285
f0396fb
a529285
 
f0396fb
a529285
f0396fb
 
 
 
 
 
 
 
 
 
 
 
 
 
a529285
 
f0396fb
a529285
 
f0396fb
 
a529285
f0396fb
 
 
 
a529285
f0396fb
 
 
 
 
 
 
 
 
a529285
f0396fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""
GAIA Agent Implementation

This module provides the main GAIA Agent class that interfaces with the app.py file.
It implements a simplified version of the agent that works independently.
"""

import logging
import time
import os
import json
import re
import traceback
import hashlib
from typing import Dict, Any, List, Optional, Union, Tuple, Literal, TypedDict

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger("gaia_agent")

# Environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
SERPER_API_KEY = os.getenv("SERPER_API_KEY", "")

# A simple TypedDict for search results
class SearchResult(TypedDict, total=False):
    title: str
    link: str
    snippet: str

# Simple memory implementation
class SimpleMemory:
    """Simple in-memory storage for conversation history and results"""
    
    def __init__(self):
        self.conversations = {}
        self.result_cache = {}
    
    def add_conversation(self, session_id: str, role: str, content: str):
        """Add a message to the conversation history"""
        if session_id not in self.conversations:
            self.conversations[session_id] = []
        
        self.conversations[session_id].append({
            "role": role,
            "content": content,
            "timestamp": time.time()
        })
    
    def get_conversation(self, session_id: str, max_messages: int = 10) -> List[Dict[str, Any]]:
        """Get the conversation history for a session"""
        if session_id not in self.conversations:
            return []
        
        # Return the most recent messages
        return self.conversations[session_id][-max_messages:]
    
    def cache_result(self, key: str, value: Any):
        """Store a result in the cache"""
        self.result_cache[key] = {
            "value": value,
            "timestamp": time.time()
        }
    
    def get_cached_result(self, key: str, max_age_seconds: int = 3600) -> Optional[Any]:
        """Get a result from the cache if it exists and is not too old"""
        if key not in self.result_cache:
            return None
        
        cache_entry = self.result_cache[key]
        age = time.time() - cache_entry["timestamp"]
        
        if age > max_age_seconds:
            # Cache entry is too old
            return None
        
        return cache_entry["value"]
    
    def clear(self, session_id: Optional[str] = None):
        """Clear memory for a session or all sessions if not specified"""
        if session_id:
            if session_id in self.conversations:
                del self.conversations[session_id]
        else:
            self.conversations = {}
            self.result_cache = {}

class GAIAAgent:
    """
    GAIA (Grounded AI Assistant) agent with simplified implementation.
    This class provides a simplified interface for the app.py file to interact with.
    """
    
    def __init__(self):
        """Initialize the GAIA agent with simplified configuration"""
        self.memory = SimpleMemory()
        logger.info("GAIA Agent initialized")
    
    def __call__(self, question: str) -> str:
        """
        Process a question and generate an answer.
        Compatible with the interface expected by app.py.
        
        Args:
            question (str): The question to process
            
        Returns:
            str: The answer to the question
        """
        return self.process_question(question)
    
    def process_question(self, question: str) -> str:
        """
        Process a question and generate an answer.
        
        Args:
            question (str): The question to process
            
        Returns:
            str: The answer to the question
        """
        # Generate a cache key for this question
        cache_key = f"question_{hashlib.md5(question.encode()).hexdigest()}"
        
        # Check if we have a cached result
        cached_answer = self.memory.get_cached_result(cache_key)
        if cached_answer:
            logger.info(f"Using cached answer for question: {question[:50]}...")
            return cached_answer
        
        try:
            # Process the question
            if OPENAI_API_KEY:
                logger.info("Using OpenAI for processing")
                answer = self._process_with_openai(question)
            else:
                # Fallback to simple pattern-matching responses
                logger.warning("Using fallback mode (no OpenAI API key provided)")
                answer = self._fallback_processing(question)
            
            # Cache the result
            self.memory.cache_result(cache_key, answer)
            
            return answer
            
        except Exception as e:
            logger.error(f"Error processing question: {str(e)}")
            logger.error(traceback.format_exc())
            
            return f"I apologize, but I encountered an error while processing your question: {str(e)}"
    
    def _process_with_openai(self, question: str) -> str:
        """Basic processing using OpenAI"""
        try:
            # This is a simplified implementation
            return f"This is a GAIA Agent response to: '{question}'\n\nIn a real implementation, this would use OpenAI's API to generate a more sophisticated response based on web search results and other tools."
            
        except Exception as e:
            logger.error(f"Error in OpenAI processing: {str(e)}")
            logger.error(traceback.format_exc())
            return f"I encountered an error while processing your question: {str(e)}"
    
    def _fallback_processing(self, question: str) -> str:
        """Simple fallback implementation when APIs are not available"""
        try:
            # Simple pattern matching for some question types
            if "how" in question.lower():
                answer = f"To address '{question.strip('?')}', I would recommend following these steps: 1) Understand the core concepts, 2) Apply a structured approach, 3) Evaluate results, and 4) Refine as needed. Without being able to access external knowledge at the moment, this is a general framework for addressing how-to questions."
            elif "what" in question.lower():
                answer = f"Regarding '{question.strip('?')}', this typically involves understanding several key factors. While I don't have access to external knowledge at the moment, this type of question usually requires defining terms, establishing context, and examining relevant concepts."
            elif "why" in question.lower():
                answer = f"The question '{question.strip('?')}' relates to causality and explanation. Such questions typically involve understanding underlying mechanisms, historical context, and logical relationships between factors."
            else:
                answer = f"I understand you're asking about '{question.strip('?')}'. To provide a comprehensive answer, I would need to access web search and other tools, which are currently unavailable. In a full implementation, I would search for relevant information and synthesize it into a coherent response."
            
            return answer
        except Exception as e:
            logger.error(f"Error in fallback processing: {str(e)}")
            return f"I apologize, but I'm currently unable to process your question due to system limitations."
    
    def query(self, question: str) -> Dict[str, Any]:
        """
        Query the agent with a question to get an answer with metadata.
        
        Args:
            question (str): The question to answer
            
        Returns:
            Dict[str, Any]: Dictionary containing the answer and metadata
        """
        try:
            # Track timing
            start_time = time.time()
            
            # Process the question
            answer = self.process_question(question)
            
            # Calculate processing time
            processing_time = time.time() - start_time
            
            # Return result with metadata
            return {
                "question": question,
                "answer": answer,
                "processing_time": processing_time,
                "timestamp": time.time(),
                "status": "success"
            }
        except Exception as e:
            logger.error(f"Error in query: {str(e)}")
            return {
                "question": question,
                "answer": f"Error processing query: {str(e)}",
                "processing_time": time.time() - start_time,
                "timestamp": time.time(),
                "status": "error",
                "error": str(e)
            }
    
    def clear_memory(self):
        """Clear the agent's memory"""
        self.memory.clear()
        logger.info("Agent memory cleared")