File size: 29,094 Bytes
c922f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
"""
Video Content Analyzer for the GAIA agent.

This module provides tools for extracting and analyzing visual content from YouTube videos,
especially when transcripts are unavailable. It includes:
- Frame extraction from YouTube videos at strategic timestamps
- Visual content analysis using multimodal capabilities
- OCR for extracting text displayed in videos
- Consolidated visual and text analysis results

It serves as a fallback mechanism when YouTube transcript extraction fails,
enabling the agent to still understand video content through visual analysis.
"""

import logging
import traceback
import time
import re
import os
import tempfile
from typing import Dict, Any, List, Optional, Tuple, Union
from enum import Enum
from pathlib import Path
import json

# Configure module-level logger
logger = logging.getLogger("gaia_agent.tools.video_content_analyzer")

# Define error severity levels
class ErrorSeverity(Enum):
    """Enum for categorizing error severity levels."""
    INFO = "INFO"           # Informational, not critical
    WARNING = "WARNING"     # Potential issue, but operation can continue
    ERROR = "ERROR"         # Operation failed but system can continue
    CRITICAL = "CRITICAL"   # System cannot function properly

try:
    from PIL import Image
    import numpy as np
except ImportError:
    Image = None
    np = None

try:
    import pytesseract
except ImportError:
    pytesseract = None

from src.gaia.agent.config import get_tool_config, get_model_config
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser


class VideoFrameExtractor:
    """Tool for extracting frames from YouTube videos using browser_action."""
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """
        Initialize the video frame extractor.
        
        Args:
            config: Optional configuration dictionary
        """
        self.config = config or get_tool_config().get("video_frame_extraction", {})
        
        # Default configuration
        self.default_frame_count = self.config.get("default_frame_count", 5)
        self.temp_dir = self.config.get("temp_dir", tempfile.gettempdir())
        self.capture_interval_pct = self.config.get("capture_interval_pct", [0, 0.25, 0.5, 0.75, 0.9])
        
        logger.info(f"VideoFrameExtractor initialized with temporary directory: {self.temp_dir}")
    
    def extract_video_id(self, video_id_or_url: str) -> str:
        """
        Extract the YouTube video ID from a URL or return the ID if already provided.
        
        Args:
            video_id_or_url: YouTube video ID or URL
            
        Returns:
            The extracted video ID
            
        Raises:
            ValueError: If the video ID cannot be extracted
        """
        # Check if it's already a video ID (typically 11 characters)
        if re.match(r'^[a-zA-Z0-9_-]{11}$', video_id_or_url):
            return video_id_or_url
            
        # Try to extract from various URL formats
        patterns = [
            r'(?:youtube\.com/watch\?v=|youtu\.be/|youtube\.com/embed/|youtube\.com/shorts/)([a-zA-Z0-9_-]{11})',
            r'youtube\.com/watch\?.*v=([a-zA-Z0-9_-]{11})'
        ]
        
        for pattern in patterns:
            match = re.search(pattern, video_id_or_url)
            if match:
                return match.group(1)
                
        raise ValueError(f"Could not extract video ID from: {video_id_or_url}")
    
    def extract_video_frames(self, video_id_or_url: str, frame_count: Optional[int] = None) -> Dict[str, Any]:
        """
        Extract frames from a YouTube video using browser_action tool.
        
        This method coordinates the browser interactions needed to:
        1. Open the YouTube video
        2. Capture screenshots at strategic timestamps
        3. Save the screenshots for further analysis
        
        Args:
            video_id_or_url: YouTube video ID or URL
            frame_count: Optional number of frames to capture, defaults to configuration
            
        Returns:
            Dictionary containing extracted frames and metadata
        """
        try:
            video_id = self.extract_video_id(video_id_or_url)
            frames_to_capture = frame_count if frame_count is not None else self.default_frame_count
            
            # Create a unique directory for this video's frames
            timestamp = int(time.time())
            video_frame_dir = os.path.join(self.temp_dir, f"video_frames_{video_id}_{timestamp}")
            os.makedirs(video_frame_dir, exist_ok=True)
            
            # Generate browser instructions for capturing frames
            frame_capture_instructions = self._generate_frame_capture_instructions(
                video_id, frames_to_capture, video_frame_dir
            )
            
            return {
                "video_id": video_id,
                "frame_count": frames_to_capture,
                "frame_dir": video_frame_dir,
                "browser_instructions": frame_capture_instructions,
                "success": False,  # Initially false, will be updated after browser interaction
                "completed": False,
                "timestamp": timestamp
            }
            
        except Exception as e:
            logger.error(f"Error preparing video frame extraction: {str(e)}")
            logger.error(traceback.format_exc())
            
            return {
                "video_id": video_id_or_url,
                "error": f"Failed to prepare video frame extraction: {str(e)}",
                "error_type": type(e).__name__,
                "severity": ErrorSeverity.ERROR.value,
                "success": False,
                "browser_instructions": None
            }
    
    def _generate_frame_capture_instructions(self, video_id: str, frame_count: int, 
                                           output_dir: str) -> List[Dict[str, Any]]:
        """
        Generate instructions for browser_action to capture video frames.
        
        Args:
            video_id: YouTube video ID
            frame_count: Number of frames to capture
            output_dir: Directory to save frames
            
        Returns:
            List of browser_action instructions
        """
        # Calculate capture points based on video duration percentages
        if frame_count != len(self.capture_interval_pct):
            # Recalculate intervals based on requested frame count
            self.capture_interval_pct = [i/(frame_count-1) if frame_count > 1 else 0.5 
                                        for i in range(frame_count)]
            # Ensure we don't go too close to the end where video might have outro
            if self.capture_interval_pct[-1] > 0.95:
                self.capture_interval_pct[-1] = 0.95
        
        # Embedded player URL with autoplay disabled for more control
        embedded_url = f"https://www.youtube.com/embed/{video_id}?autoplay=0&controls=1"
        
        # Browser instructions for capturing frames
        instructions = [
            {
                "action": "launch",
                "url": embedded_url,
                "description": "Launch YouTube embedded player for the video"
            },
            {
                "action": "wait",
                "seconds": 3,
                "description": "Wait for video player to load"
            }
        ]
        
        # Add instructions for each capture point
        for i, interval_pct in enumerate(self.capture_interval_pct):
            # Play video instructions
            instructions.extend([
                {
                    "action": "click",
                    "selector": ".ytp-play-button",
                    "description": f"Click play button to start video"
                },
                {
                    "action": "wait_for_duration_pct",
                    "percentage": interval_pct,
                    "description": f"Wait until {interval_pct:.0%} of the video"
                },
                {
                    "action": "click",
                    "selector": ".ytp-play-button",
                    "description": "Pause the video for screenshot"
                },
                {
                    "action": "take_screenshot",
                    "filename": f"{output_dir}/frame_{i+1}_of_{frame_count}.png",
                    "description": f"Take screenshot at {interval_pct:.0%} of video duration"
                }
            ])
        
        # Add final instruction to close browser
        instructions.append({
            "action": "close",
            "description": "Close the browser after capturing all frames"
        })
        
        return instructions
    
    def process_captured_frames(self, frame_dir: str) -> Dict[str, Any]:
        """
        Process captured frames after browser_action has completed the extraction.
        
        Args:
            frame_dir: Directory containing the captured frames
            
        Returns:
            Dictionary containing processed frame information
        """
        try:
            if not os.path.exists(frame_dir):
                raise FileNotFoundError(f"Frame directory not found: {frame_dir}")
            
            # Get all PNG files in the directory
            frame_files = sorted(
                [f for f in os.listdir(frame_dir) if f.lower().endswith('.png')]
            )
            
            if not frame_files:
                return {
                    "frame_dir": frame_dir,
                    "error": "No frame images found in directory",
                    "error_type": "NoFramesFound",
                    "severity": ErrorSeverity.ERROR.value,
                    "success": False
                }
            
            # Process each frame file 
            frame_data = []
            for i, frame_file in enumerate(frame_files):
                frame_path = os.path.join(frame_dir, frame_file)
                
                # Extract frame number and total from filename using regex
                match = re.search(r'frame_(\d+)_of_(\d+)', frame_file)
                if match:
                    frame_num = int(match.group(1))
                    total_frames = int(match.group(2))
                    position = (frame_num - 1) / (total_frames - 1) if total_frames > 1 else 0
                else:
                    frame_num = i + 1
                    total_frames = len(frame_files)
                    position = i / (len(frame_files) - 1) if len(frame_files) > 1 else 0
                
                frame_data.append({
                    "path": frame_path,
                    "filename": frame_file,
                    "frame_number": frame_num,
                    "total_frames": total_frames,
                    "position": position,
                    "timestamp_pct": position
                })
            
            return {
                "frame_dir": frame_dir,
                "frame_count": len(frame_files),
                "frames": frame_data,
                "success": True,
                "completed": True
            }
            
        except Exception as e:
            logger.error(f"Error processing captured frames: {str(e)}")
            logger.error(traceback.format_exc())
            
            return {
                "frame_dir": frame_dir,
                "error": f"Failed to process captured frames: {str(e)}",
                "error_type": type(e).__name__,
                "severity": ErrorSeverity.ERROR.value,
                "success": False
            }


class VideoContentAnalyzer:
    """Tool for analyzing visual content from YouTube videos."""
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """
        Initialize the video content analyzer.
        
        Args:
            config: Optional configuration dictionary
        """
        self.config = config or get_tool_config().get("video_content_analysis", {})
        self.model_config = get_model_config()
        
        # Initialize vision model for image analysis
        self.model = ChatOpenAI(
            model=self.model_config.get("vision_model", "gpt-4o"),
            temperature=self.model_config.get("temperature", 0.1),
            max_tokens=self.model_config.get("max_tokens", 4096)
        )
        
        # Initialize frame extractor
        self.frame_extractor = VideoFrameExtractor(config)
        
        # OCR availability check
        if pytesseract is None:
            logger.warning("Pytesseract not installed. OCR features will be limited.")
    
    def analyze_video_content(self, video_id_or_url: str, frame_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Analyze video content from captured frames.
        
        Args:
            video_id_or_url: YouTube video ID or URL
            frame_data: Dictionary containing frame information from process_captured_frames
            
        Returns:
            Dictionary containing analysis results
        """
        try:
            video_id = self.frame_extractor.extract_video_id(video_id_or_url)
            
            if not frame_data.get("success", False):
                return {
                    "video_id": video_id,
                    "error": "Frame extraction was not successful",
                    "error_type": "FrameExtractionFailed",
                    "severity": ErrorSeverity.ERROR.value,
                    "success": False
                }
            
            frames = frame_data.get("frames", [])
            if not frames:
                return {
                    "video_id": video_id,
                    "error": "No frames available for analysis",
                    "error_type": "NoFramesAvailable",
                    "severity": ErrorSeverity.ERROR.value,
                    "success": False
                }
            
            # Analyze each frame
            frame_analyses = []
            for frame in frames:
                frame_path = frame.get("path")
                frame_position = frame.get("position", 0)
                
                if not os.path.exists(frame_path):
                    logger.warning(f"Frame file not found: {frame_path}")
                    continue
                
                # Analyze the frame
                frame_analysis = self._analyze_frame(frame_path, frame_position)
                frame_analyses.append({
                    **frame,
                    "analysis": frame_analysis
                })
            
            # Extract text content from frames using OCR
            ocr_results = self._extract_text_from_frames(frames)
            
            # Perform consolidated analysis of all frames
            consolidated_analysis = self._consolidate_frame_analyses(frame_analyses)
            
            # Combine all results
            return {
                "video_id": video_id,
                "frame_count": len(frames),
                "frame_analyses": frame_analyses,
                "ocr_results": ocr_results,
                "consolidated_analysis": consolidated_analysis,
                "success": True,
                "has_visual_content": True,
                "analysis_method": "frame_extraction"
            }
            
        except Exception as e:
            logger.error(f"Error analyzing video content: {str(e)}")
            logger.error(traceback.format_exc())
            
            return {
                "video_id": video_id_or_url,
                "error": f"Failed to analyze video content: {str(e)}",
                "error_type": type(e).__name__,
                "severity": ErrorSeverity.ERROR.value,
                "success": False
            }
    
    def _analyze_frame(self, frame_path: str, frame_position: float) -> Dict[str, Any]:
        """
        Analyze a single video frame using the vision model.
        
        Args:
            frame_path: Path to the frame image file
            frame_position: Position of the frame in the video (0-1)
            
        Returns:
            Dictionary containing frame analysis
        """
        try:
            if Image is None:
                raise ImportError("PIL not installed. Install with: pip install pillow")
            
            if not os.path.exists(frame_path):
                raise FileNotFoundError(f"Frame file not found: {frame_path}")
            
            image = Image.open(frame_path)
            
            # Use a simplified prompt to avoid string formatting issues
            frame_type = "beginning" if frame_position < 0.1 else "end" if frame_position > 0.85 else "middle"
            
            analysis_prompt = f"""Analyze this frame from the {frame_type} of a YouTube video.

For frames from the beginning of videos, focus on: introductory elements, titles, channel branding.
For frames from the middle of videos, focus on: main content, actions, subjects, visual information.
For frames from the end of videos, focus on: conclusions, call-to-action elements, credits.

Provide a detailed JSON response with:
- frame_description: What's visible in the frame
- visible_text: Any text visible in the frame
- key_elements: Important objects, people, or visual elements
- topic: The apparent topic or subject
- visual_style: Description of the visual presentation

JSON Response:"""
            
            prompt_template = PromptTemplate.from_template(analysis_prompt)
            chain = prompt_template | self.model | StrOutputParser()
            result = chain.invoke({"image": image})
            
            try:
                parsed_result = json.loads(result)
                return parsed_result
            except json.JSONDecodeError:
                logger.warning("Frame analysis result is not valid JSON, returning as plain text")
                return {
                    "frame_description": result,
                    "analysis_error": "Failed to parse JSON result"
                }
                
        except Exception as e:
            logger.error(f"Error analyzing frame: {str(e)}")
            logger.error(traceback.format_exc())
            return {
                "analysis_error": f"Frame analysis failed: {str(e)}",
                "error_type": type(e).__name__
            }
    
    def _extract_text_from_frames(self, frames: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Extract text from frames using OCR.
        
        Args:
            frames: List of frame information dictionaries
            
        Returns:
            Dictionary containing OCR results
        """
        try:
            if pytesseract is None:
                return {
                    "success": False,
                    "error": "Pytesseract not installed. Install with: pip install pytesseract",
                    "text_found": False
                }
            
            if Image is None:
                return {
                    "success": False,
                    "error": "PIL not installed. Install with: pip install pillow",
                    "text_found": False
                }
            
            ocr_results = []
            all_text = []
            
            for frame in frames:
                frame_path = frame.get("path")
                frame_position = frame.get("position", 0)
                
                if not os.path.exists(frame_path):
                    logger.warning(f"Frame file not found for OCR: {frame_path}")
                    continue
                
                try:
                    image = Image.open(frame_path)
                    
                    # Apply image preprocessing for better OCR results
                    # Convert to grayscale for better text recognition
                    if image.mode != 'L':
                        image = image.convert('L')
                    
                    # Extract text using pytesseract
                    extracted_text = pytesseract.image_to_string(image)
                    extracted_text = extracted_text.strip()
                    
                    # Skip empty results
                    if not extracted_text:
                        ocr_results.append({
                            "frame_position": frame_position,
                            "text_found": False,
                            "text": ""
                        })
                        continue
                    
                    # Add to results
                    ocr_results.append({
                        "frame_position": frame_position,
                        "text_found": True,
                        "text": extracted_text
                    })
                    
                    all_text.append(f"[Frame at {frame_position:.0%}]: {extracted_text}")
                    
                except Exception as e:
                    logger.warning(f"OCR failed for frame {frame_path}: {str(e)}")
                    ocr_results.append({
                        "frame_position": frame_position,
                        "text_found": False,
                        "text": "",
                        "error": str(e)
                    })
            
            # Compile all results
            return {
                "success": True,
                "frames_processed": len(frames),
                "frames_with_text": sum(1 for r in ocr_results if r.get("text_found", False)),
                "text_found": any(r.get("text_found", False) for r in ocr_results),
                "frame_results": ocr_results,
                "combined_text": "\n\n".join(all_text)
            }
            
        except Exception as e:
            logger.error(f"Error extracting text from frames: {str(e)}")
            logger.error(traceback.format_exc())
            
            return {
                "success": False,
                "error": f"Text extraction failed: {str(e)}",
                "error_type": type(e).__name__,
                "text_found": False
            }
    
    def _consolidate_frame_analyses(self, frame_analyses: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Consolidate individual frame analyses into a comprehensive video analysis.
        
        Args:
            frame_analyses: List of frame analysis results
            
        Returns:
            Dictionary containing consolidated analysis
        """
        try:
            if not frame_analyses:
                return {
                    "error": "No frame analyses available for consolidation",
                    "success": False
                }
                
            # Prepare frame descriptions for input
            frame_descriptions = []
            for frame_analysis in frame_analyses:
                position = frame_analysis.get("position", 0)
                analysis = frame_analysis.get("analysis", {})
                frame_desc = analysis.get("frame_description", "No description available")
                frame_descriptions.append(f"[Frame at {position:.0%} of video] {frame_desc}")
            
            # Join all the descriptions with newlines
            all_descriptions = "\n".join(frame_descriptions)
            
            # Create a simplified consolidated prompt
            consolidated_prompt = """Based on the analysis of multiple frames from a YouTube video, provide a comprehensive understanding of the video content.

Frame descriptions:
{frame_descriptions}

Provide a JSON response with:
- video_topic: The main topic or subject of the video
- video_type: The type of video (tutorial, vlog, educational, etc.)
- key_elements: Important visual elements across frames
- visual_style: The overall visual style and production quality
- summary: A summary of what the video appears to be conveying

JSON Response:"""
            
            prompt_template = PromptTemplate.from_template(consolidated_prompt)
            chain = prompt_template | self.model | StrOutputParser()
            result = chain.invoke({"frame_descriptions": all_descriptions})
            
            try:
                parsed_result = json.loads(result)
                parsed_result["success"] = True
                return parsed_result
            except json.JSONDecodeError:
                logger.warning("Consolidated analysis result is not valid JSON, returning as plain text")
                return {
                    "summary": result,
                    "success": True,
                    "parsing_error": "Failed to parse JSON result"
                }
                
        except Exception as e:
            logger.error(f"Error consolidating frame analyses: {str(e)}")
            logger.error(traceback.format_exc())
            
            return {
                "error": f"Consolidation failed: {str(e)}",
                "error_type": type(e).__name__,
                "success": False
            }

    def analyze_youtube_video(self, video_id_or_url: str, frame_count: Optional[int] = None) -> Dict[str, Any]:
        """
        Complete flow for analyzing YouTube video content through visual extraction.
        
        This serves as the main entry point for the module, handling the entire process:
        1. Extract frames from the video
        2. Process the captured frames
        3. Analyze the visual content
        4. Extract text using OCR
        5. Provide consolidated results
        
        Args:
            video_id_or_url: YouTube video ID or URL
            frame_count: Optional number of frames to capture
            
        Returns:
            Dictionary containing complete analysis results
        """
        try:
            # Extract frames from the video
            extraction_result = self.frame_extractor.extract_video_frames(
                video_id_or_url, frame_count
            )
            
            # At this point, the browser_action tool should be used according to the
            # instructions in extraction_result["browser_instructions"]
            # This requires user/agent interaction to actually capture the frames
            
            # After browser_action has completed, process the captured frames
            frame_dir = extraction_result.get("frame_dir")
            if not frame_dir or not os.path.exists(frame_dir):
                return {
                    "video_id": self.frame_extractor.extract_video_id(video_id_or_url),
                    "error": "Frame extraction not completed or directory not found",
                    "error_type": "FrameExtractionIncomplete",
                    "severity": ErrorSeverity.ERROR.value,
                    "success": False,
                    "browser_instructions": extraction_result.get("browser_instructions"),
                    "extract_frames_first": True,
                    "frame_dir": frame_dir
                }
            
            # Process captured frames
            frame_data = self.frame_extractor.process_captured_frames(frame_dir)
            
            # Analyze the frames
            analysis_result = self.analyze_video_content(video_id_or_url, frame_data)
            
            # Add guidance for interpretation
            analysis_result["guidance"] = """
            This analysis is based on visual content extracted from the YouTube video.
            It provides insights into what's shown in the video when transcript is unavailable.
            The frame analyses show content from different points in the video timeline.
            OCR results capture text visible in the video frames.
            The consolidated analysis summarizes the overall video content based on visual cues.
            """
            
            return analysis_result
            
        except Exception as e:
            logger.error(f"Error in complete YouTube video analysis flow: {str(e)}")
            logger.error(traceback.format_exc())
            
            return {
                "video_id": video_id_or_url,
                "error": f"Complete analysis flow failed: {str(e)}",
                "error_type": type(e).__name__,
                "severity": ErrorSeverity.ERROR.value,
                "success": False
            }


def create_video_frame_extractor() -> VideoFrameExtractor:
    """
    Create an instance of the VideoFrameExtractor tool.
    
    Returns:
        VideoFrameExtractor: An instance of the video frame extractor tool
    """
    config = get_tool_config().get("video_frame_extraction", {})
    return VideoFrameExtractor(config)


def create_video_content_analyzer() -> VideoContentAnalyzer:
    """
    Create an instance of the VideoContentAnalyzer tool.
    
    Returns:
        VideoContentAnalyzer: An instance of the video content analyzer tool
    """
    config = get_tool_config().get("video_content_analysis", {})
    return VideoContentAnalyzer(config)