File size: 15,239 Bytes
c922f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
"""
Formatting utilities for GAIA implementation.

This module provides functions for extracting, formatting, and validating text content,
including answers, dates, numbers, and structured data.
"""

import re
import json
import logging
from typing import Dict, Any, List, Optional, Union, Tuple, Set

logger = logging.getLogger("gaia_agent.utils.formatting")

# Constants for formatting types
FORMAT_TYPES = {
    "TEXT": "text",              # Free-form text
    "NUMBER": "number",          # Numerical answer
    "DATE": "date",              # Date or time
    "BOOLEAN": "boolean",        # Yes/No or True/False
    "LIST": "list",              # Comma-separated list
    "ENTITY": "entity",          # Named entity (person, place, etc.)
    "STRUCTURED": "structured"   # JSON or structured data
}

def extract_answer(response: str, expected_format: Optional[str] = None) -> str:
    """
    Extract the answer from a response.
    
    Args:
        response: The full response text
        expected_format: Optional expected format type
        
    Returns:
        The extracted answer
    """
    if len(response.split()) < 20:
        return response.strip()
    
    answer_patterns = [
        r'(?:The\s+answer\s+is:?\s+)([^.]+)',
        r'(?:In\s+conclusion:?\s+)([^.]+)',
        r'(?:To\s+summarize:?\s+)([^.]+)',
        r'(?:Therefore:?\s+)([^.]+)',
        r'(?:Thus:?\s+)([^.]+)',
        r'(?:In\s+summary:?\s+)([^.]+)',
        r'(?:The\s+result\s+is:?\s+)([^.]+)'
    ]
    
    for pattern in answer_patterns:
        match = re.search(pattern, response, re.IGNORECASE)
        if match:
            return match.group(1).strip()
    
    if expected_format:
        if expected_format == FORMAT_TYPES["NUMBER"]:
            return extract_number(response)
        elif expected_format == FORMAT_TYPES["DATE"]:
            return extract_date(response)
        elif expected_format == FORMAT_TYPES["BOOLEAN"]:
            return extract_boolean(response)
        elif expected_format == FORMAT_TYPES["LIST"]:
            return extract_list(response)
        elif expected_format == FORMAT_TYPES["ENTITY"]:
            return extract_entity(response)
        elif expected_format == FORMAT_TYPES["STRUCTURED"]:
            return extract_structured_data(response)
    
    sentences = re.split(r'[.!?]\s+', response)
    if sentences:
        return sentences[-1].strip()
    
    return response.strip()

def extract_number(text: str) -> str:
    """
    Extract a numerical answer from text.
    
    Args:
        text: The text to extract from
        
    Returns:
        The extracted number as a string
    """
    number_pattern = r'(?:[\$€£¥])?(?:[\-+])?(?:\d{1,3}(?:,\d{3})+|\d+)(?:\.\d+)?(?:\s*%)?'
    
    answer_number_patterns = [
        rf'(?:The\s+(?:answer|result|number|value|amount)\s+is:?\s+)({number_pattern})',
        rf'(?:equals\s+)({number_pattern})',
        rf'(?:approximately\s+)({number_pattern})',
        rf'(?:about\s+)({number_pattern})'
    ]
    
    for pattern in answer_number_patterns:
        match = re.search(pattern, text, re.IGNORECASE)
        if match:
            return match.group(1).strip()
    
    matches = re.findall(number_pattern, text)
    if matches:
        return matches[-1].strip()
    
    return ""

def extract_date(text: str) -> str:
    """
    Extract a date or time from text.
    
    Args:
        text: The text to extract from
        
    Returns:
        The extracted date as a string
    """
    date_patterns = [
        r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}',  # MM/DD/YYYY or DD/MM/YYYY
        r'\d{4}[-/]\d{1,2}[-/]\d{1,2}',    # YYYY/MM/DD
        r'(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*\s+\d{1,2}(?:st|nd|rd|th)?,?\s+\d{4}',  # Month DD, YYYY
        r'\d{1,2}(?:st|nd|rd|th)?\s+(?:of\s+)?(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*,?\s+\d{4}',  # DD Month YYYY
        r'\d{1,2}:\d{2}(?::\d{2})?\s*(?:AM|PM|am|pm)?'  # HH:MM:SS AM/PM
    ]
    
    answer_date_patterns = [
        rf'(?:The\s+(?:date|time)\s+is:?\s+)({")|(".join(date_patterns)})',
        rf'(?:occurred\s+on\s+)({")|(".join(date_patterns)})',
        rf'(?:happened\s+on\s+)({")|(".join(date_patterns)})',
        rf'(?:scheduled\s+for\s+)({")|(".join(date_patterns)})'
    ]
    
    for pattern in answer_date_patterns:
        match = re.search(pattern, text, re.IGNORECASE)
        if match:
            return match.group(1).strip()
    
    for pattern in date_patterns:
        match = re.search(pattern, text)
        if match:
            return match.group(0).strip()
    
    return ""

def extract_boolean(text: str) -> str:
    """
    Extract a boolean answer (yes/no, true/false) from text.
    
    Args:
        text: The text to extract from
        
    Returns:
        The extracted boolean as a string
    """
    text_lower = text.lower()
    
    yes_patterns = [
        r'^yes',
        r'^affirmative',
        r'^correct',
        r'^true',
        r'the answer is yes',
        r'the answer is affirmative',
        r'the answer is true',
        r'the answer is correct'
    ]
    
    no_patterns = [
        r'^no',
        r'^negative',
        r'^incorrect',
        r'^false',
        r'the answer is no',
        r'the answer is negative',
        r'the answer is false',
        r'the answer is incorrect'
    ]
    
    for pattern in yes_patterns:
        if re.search(pattern, text_lower):
            return "Yes"
    
    for pattern in no_patterns:
        if re.search(pattern, text_lower):
            return "No"
    
    positive_terms = ["can", "does", "is", "will", "should", "would", "could", "positive", "affirmative"]
    negative_terms = ["cannot", "can't", "doesn't", "does not", "isn't", "is not", "won't", "will not", 
                     "shouldn't", "should not", "wouldn't", "would not", "couldn't", "could not", 
                     "negative", "never"]
    
    positive_count = sum(1 for term in positive_terms if term in text_lower)
    negative_count = sum(1 for term in negative_terms if term in text_lower)
    
    if positive_count > negative_count:
        return "Yes"
    elif negative_count > positive_count:
        return "No"
    
    return "Unknown"

def extract_list(text: str) -> str:
    """
    Extract a comma-separated list from text.
    
    Args:
        text: The text to extract from
        
    Returns:
        The extracted list as a comma-separated string
    """
    list_patterns = [
        r'(?:The\s+list\s+is:?\s+)(.*?)(?:\.|\n|$)',
        r'(?:The\s+items\s+are:?\s+)(.*?)(?:\.|\n|$)',
        r'(?:The\s+elements\s+are:?\s+)(.*?)(?:\.|\n|$)',
        r'(?:They\s+are:?\s+)(.*?)(?:\.|\n|$)'
    ]
    
    for pattern in list_patterns:
        match = re.search(pattern, text, re.IGNORECASE)
        if match:
            items = match.group(1).strip()
            items = re.sub(r'\s*,\s*', ', ', items)  # Normalize commas
            items = re.sub(r'\s+and\s+', ', ', items)  # Replace "and" with comma
            items = re.sub(r'\s*;\s*', ', ', items)  # Replace semicolons with commas
            return items
    
    bullet_pattern = r'(?:^|\n)(?:\d+\.|[-•*])\s*(.*?)(?:$|\n)'
    bullet_matches = re.findall(bullet_pattern, text)
    if bullet_matches:
        return ', '.join(item.strip() for item in bullet_matches)
    
    comma_pattern = r'(?:^|:)\s*((?:\w+(?:\s+\w+)*,\s*){2,}(?:\w+(?:\s+\w+)*))'
    comma_match = re.search(comma_pattern, text)
    if comma_match:
        return comma_match.group(1).strip()
    
    return ""

def extract_entity(text: str) -> str:
    """
    Extract a named entity (person, place, organization) from text.
    
    Args:
        text: The text to extract from
        
    Returns:
        The extracted entity as a string
    """
    entity_patterns = [
        r'(?:The\s+(?:person|individual)\s+is:?\s+)([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)',
        r'(?:The\s+(?:place|location)\s+is:?\s+)([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)',
        r'(?:The\s+(?:organization|company)\s+is:?\s+)([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)',
        r'(?:The\s+(?:entity)\s+is:?\s+)([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)'
    ]
    
    for pattern in entity_patterns:
        match = re.search(pattern, text)
        if match:
            return match.group(1).strip()
    
    proper_noun_pattern = r'([A-Z][a-z]+(?:\s+[A-Z][a-z]+)*)'
    matches = re.findall(proper_noun_pattern, text)
    
    if matches:
        common_words = {"The", "A", "An", "This", "That", "These", "Those", "It", "Its", "I", "My", "Me", "You", "Your"}
        filtered_matches = [match for match in matches if match not in common_words]
        
        if filtered_matches:
            return filtered_matches[0].strip()
    
    return ""

def extract_structured_data(text: str) -> str:
    """
    Extract structured data (JSON) from text.
    
    Args:
        text: The text to extract from
        
    Returns:
        The extracted structured data as a string
    """
    json_pattern = r'```(?:json)?\s*({[\s\S]*?})```'
    match = re.search(json_pattern, text)
    if match:
        json_str = match.group(1).strip()
        try:
            parsed = json.loads(json_str)
            return json.dumps(parsed, indent=2)
        except json.JSONDecodeError:
            logger.warning("Found JSON-like block but it's not valid JSON")
    
    curly_pattern = r'({[\s\S]*?})'
    matches = re.findall(curly_pattern, text)
    for match in matches:
        try:
            parsed = json.loads(match)
            return json.dumps(parsed, indent=2)
        except json.JSONDecodeError:
            continue
    
    return ""

def format_answer(answer: str, format_type: str) -> str:
    """
    Format an answer according to the specified format type.
    
    Args:
        answer: The answer to format
        format_type: The desired format type
        
    Returns:
        The formatted answer
    """
    
    if format_type == FORMAT_TYPES["TEXT"]:
        return answer.strip()
    
    elif format_type == FORMAT_TYPES["NUMBER"]:
        number_str = extract_number(answer)
        if not number_str:
            return answer.strip()
        
        clean_number = re.sub(r'[^\d\.\-\+]', '', number_str)
        try:
            num = float(clean_number)
            if num.is_integer():
                return str(int(num))
            return str(num)
        except ValueError:
            return number_str
    
    elif format_type == FORMAT_TYPES["DATE"]:
        date_str = extract_date(answer)
        if date_str:
            return date_str
        return answer.strip()
    
    elif format_type == FORMAT_TYPES["BOOLEAN"]:
        bool_str = extract_boolean(answer)
        if bool_str in ["Yes", "No", "Unknown"]:
            return bool_str
        return answer.strip()
    
    elif format_type == FORMAT_TYPES["LIST"]:
        list_str = extract_list(answer)
        if list_str:
            items = [item.strip() for item in list_str.split(',')]
            return ', '.join(items)
        return answer.strip()
    
    elif format_type == FORMAT_TYPES["ENTITY"]:
        entity_str = extract_entity(answer)
        if entity_str:
            return entity_str
        return answer.strip()
    
    elif format_type == FORMAT_TYPES["STRUCTURED"]:
        json_str = extract_structured_data(answer)
        if json_str:
            return json_str
        return answer.strip()
    
    return answer.strip()

def validate_answer_format(answer: str, expected_format: str) -> Dict[str, Any]:
    """
    Validate that an answer matches the expected format.
    
    Args:
        answer: The answer to validate
        expected_format: The expected format type
        
    Returns:
        Dictionary with validation results
    """
    
    result = {
        "is_valid": False,
        "formatted_answer": answer,
        "error": None
    }
    
    if expected_format == FORMAT_TYPES["NUMBER"]:
        clean_answer = re.sub(r'[^\d\.\-\+]', '', answer)
        try:
            float(clean_answer)
            result["is_valid"] = True
            result["formatted_answer"] = clean_answer
        except ValueError:
            result["is_valid"] = False
            result["error"] = "Answer is not a valid number"
    
    elif expected_format == FORMAT_TYPES["DATE"]:
        date_patterns = [
            r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}',
            r'\d{4}[-/]\d{1,2}[-/]\d{1,2}',
            r'(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*\s+\d{1,2}(?:st|nd|rd|th)?,?\s+\d{4}',
            r'\d{1,2}(?:st|nd|rd|th)?\s+(?:of\s+)?(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*,?\s+\d{4}'
        ]
        if any(re.search(pattern, answer) for pattern in date_patterns):
            result["is_valid"] = True
        else:
            result["is_valid"] = False
            result["error"] = "Answer is not a valid date"
    
    elif expected_format == FORMAT_TYPES["BOOLEAN"]:
        bool_answer = extract_boolean(answer)
        if bool_answer in ["Yes", "No"]:
            result["is_valid"] = True
            result["formatted_answer"] = bool_answer
        else:
            result["is_valid"] = False
            result["error"] = "Answer is not a clear Yes/No"
    
    elif expected_format == FORMAT_TYPES["LIST"]:
        list_items = [item.strip() for item in answer.split(',')]
        if len(list_items) > 1:
            result["is_valid"] = True
            result["formatted_answer"] = ', '.join(list_items)
        else:
            result["is_valid"] = False
            result["error"] = "Answer is not a comma-separated list"
    
    elif expected_format == FORMAT_TYPES["ENTITY"]:
        if re.match(r'^[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*$', answer):
            result["is_valid"] = True
        else:
            result["is_valid"] = False
            result["error"] = "Answer is not a valid named entity"
    
    elif expected_format == FORMAT_TYPES["STRUCTURED"]:
        try:
            json.loads(answer)
            result["is_valid"] = True
        except json.JSONDecodeError:
            result["is_valid"] = False
            result["error"] = "Answer is not valid JSON"
    
    else:  # FORMAT_TYPES["TEXT"] or any other
        result["is_valid"] = True
    
    return result

def process_answer(response: str, expected_format: Optional[str] = None) -> Dict[str, Any]:
    """
    Process an answer: extract, format, and validate.
    
    Args:
        response: The full response text
        expected_format: Optional expected format type
        
    Returns:
        Dictionary with processed answer information
    """
    
    format_type = expected_format if expected_format else FORMAT_TYPES["TEXT"]
    
    extracted_answer = extract_answer(response, format_type)
    formatted_answer = format_answer(extracted_answer, format_type)
    validation_result = validate_answer_format(formatted_answer, format_type)
    
    return {
        "original_response": response,
        "extracted_answer": extracted_answer,
        "formatted_answer": formatted_answer,
        "format_type": format_type,
        "is_valid": validation_result["is_valid"],
        "error": validation_result["error"]
    }