File size: 33,745 Bytes
c922f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 |
"""
Log Analyzer for Gaia System
This module provides tools for analyzing log files generated by the Gaia system.
It can parse log files, identify patterns, correlate errors across components,
generate reports, and visualize execution flow.
Features:
- Parse and analyze log files
- Identify error patterns and frequencies
- Correlate errors across different components
- Generate diagnostic reports
- Visualize execution flow and timing
"""
import os
import re
import json
import logging
import datetime
from typing import Dict, List, Any, Optional, Tuple, Set
from collections import defaultdict, Counter
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from pathlib import Path
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger("gaia_log_analyzer")
# Default log directory
DEFAULT_LOG_DIR = "logs"
class LogEntry:
"""Represents a parsed log entry."""
def __init__(
self,
timestamp: datetime.datetime,
logger_name: str,
level: str,
trace_id: str,
message: str,
details: Optional[Dict[str, Any]] = None
):
self.timestamp = timestamp
self.logger_name = logger_name
self.level = level
self.trace_id = trace_id
self.message = message
self.details = details or {}
def __repr__(self):
return f"LogEntry({self.timestamp}, {self.logger_name}, {self.level}, {self.trace_id}, {self.message[:30]}...)"
@classmethod
def from_line(cls, line: str) -> Optional['LogEntry']:
"""
Parse a log line into a LogEntry object.
Args:
line: The log line to parse
Returns:
LogEntry object or None if parsing failed
"""
# Regular expression to match log lines
# Format: timestamp - logger_name - level - [trace_id] - message
pattern = r"(\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2},\d{3}) - ([^-]+) - ([^-]+) - \[([^\]]+)\] - (.+)"
match = re.match(pattern, line)
if not match:
return None
timestamp_str, logger_name, level, trace_id, message = match.groups()
try:
timestamp = datetime.datetime.strptime(timestamp_str, "%Y-%m-%d %H:%M:%S,%f")
except ValueError:
timestamp = datetime.datetime.now() # Fallback
# Extract JSON details if present
details = None
if ": {" in message and message.endswith("}"):
try:
json_start = message.index(": {") + 2
json_str = message[json_start:]
details = json.loads(json_str)
message = message[:json_start-2] # Remove JSON from message
except (ValueError, json.JSONDecodeError):
pass
return cls(
timestamp=timestamp,
logger_name=logger_name.strip(),
level=level.strip(),
trace_id=trace_id.strip(),
message=message.strip(),
details=details
)
class LogAnalyzer:
"""
Analyzes log files to identify patterns and generate reports.
"""
def __init__(self, log_dir: str = DEFAULT_LOG_DIR):
"""
Initialize the log analyzer.
Args:
log_dir: Directory containing log files
"""
self.log_dir = log_dir
self.log_files = {
"main": os.path.join(log_dir, "gaia_main.log"),
"error": os.path.join(log_dir, "gaia_errors.log"),
"performance": os.path.join(log_dir, "gaia_performance.log"),
"api": os.path.join(log_dir, "gaia_api.log"),
"tool": os.path.join(log_dir, "gaia_tools.log")
}
# Initialize data structures
self.entries_by_trace: Dict[str, List[LogEntry]] = defaultdict(list)
self.errors_by_trace: Dict[str, List[LogEntry]] = defaultdict(list)
self.api_calls_by_trace: Dict[str, List[LogEntry]] = defaultdict(list)
self.tool_usage_by_trace: Dict[str, List[LogEntry]] = defaultdict(list)
self.performance_by_trace: Dict[str, List[LogEntry]] = defaultdict(list)
# Statistics
self.error_counts: Counter = Counter()
self.api_error_counts: Counter = Counter()
self.tool_error_counts: Counter = Counter()
self.trace_durations: Dict[str, float] = {}
self.trace_error_counts: Dict[str, int] = {}
# Load log files
self._load_logs()
def _load_logs(self):
"""Load and parse all log files."""
logger.info(f"Loading logs from {self.log_dir}")
for log_type, log_file in self.log_files.items():
if not os.path.exists(log_file):
logger.warning(f"Log file not found: {log_file}")
continue
logger.info(f"Parsing {log_type} log: {log_file}")
self._parse_log_file(log_file, log_type)
logger.info(f"Parsed logs for {len(self.entries_by_trace)} trace IDs")
# Calculate statistics
self._calculate_statistics()
def _parse_log_file(self, log_file: str, log_type: str):
"""
Parse a log file and extract entries.
Args:
log_file: Path to the log file
log_type: Type of log file (main, error, etc.)
"""
try:
with open(log_file, 'r', encoding='utf-8') as f:
for line in f:
entry = LogEntry.from_line(line.strip())
if entry:
# Add to trace-specific collections
self.entries_by_trace[entry.trace_id].append(entry)
# Add to type-specific collections
if log_type == "error" or entry.level in ["ERROR", "CRITICAL"]:
self.errors_by_trace[entry.trace_id].append(entry)
elif log_type == "api":
self.api_calls_by_trace[entry.trace_id].append(entry)
elif log_type == "tool":
self.tool_usage_by_trace[entry.trace_id].append(entry)
elif log_type == "performance":
self.performance_by_trace[entry.trace_id].append(entry)
except Exception as e:
logger.error(f"Error parsing log file {log_file}: {str(e)}")
def _calculate_statistics(self):
"""Calculate statistics from parsed logs."""
# Error counts by type
for trace_id, errors in self.errors_by_trace.items():
for error in errors:
if "ERROR_DETAILS" in error.message:
if error.details and "error_type" in error.details:
self.error_counts[error.details["error_type"]] += 1
else:
# Extract error type from message
error_type_match = re.search(r"ERROR: ([^-]+) -", error.message)
if error_type_match:
self.error_counts[error_type_match.group(1).strip()] += 1
else:
self.error_counts["Unknown"] += 1
# Count errors per trace
self.trace_error_counts[trace_id] = len(errors)
# API error counts
for trace_id, api_calls in self.api_calls_by_trace.items():
for call in api_calls:
if "API ERROR" in call.message:
api_name = "Unknown"
api_match = re.search(r"API ERROR: ([^-]+) -", call.message)
if api_match:
api_name = api_match.group(1).strip()
self.api_error_counts[api_name] += 1
# Tool error counts
for trace_id, tool_usages in self.tool_usage_by_trace.items():
for usage in tool_usages:
if "TOOL EXECUTION FAILURE" in usage.message:
tool_name = "Unknown"
tool_match = re.search(r"TOOL EXECUTION FAILURE: ([^-]+) -", usage.message)
if tool_match:
tool_name = tool_match.group(1).strip()
self.tool_error_counts[tool_name] += 1
# Calculate trace durations
for trace_id, entries in self.entries_by_trace.items():
if entries:
# Sort entries by timestamp
sorted_entries = sorted(entries, key=lambda e: e.timestamp)
start_time = sorted_entries[0].timestamp
end_time = sorted_entries[-1].timestamp
duration = (end_time - start_time).total_seconds()
self.trace_durations[trace_id] = duration
def get_error_summary(self) -> Dict[str, Any]:
"""
Get a summary of errors.
Returns:
Dict containing error statistics
"""
return {
"total_errors": sum(self.error_counts.values()),
"error_types": dict(self.error_counts.most_common()),
"api_errors": dict(self.api_error_counts.most_common()),
"tool_errors": dict(self.tool_error_counts.most_common()),
"traces_with_errors": len(self.errors_by_trace),
"avg_errors_per_trace": sum(self.trace_error_counts.values()) / len(self.trace_error_counts) if self.trace_error_counts else 0
}
def get_performance_summary(self) -> Dict[str, Any]:
"""
Get a summary of performance metrics.
Returns:
Dict containing performance statistics
"""
# Extract timing data from performance logs
timing_data = []
for trace_id, entries in self.performance_by_trace.items():
for entry in entries:
if "TIMING_DATA" in entry.message and entry.details:
timing_data.append(entry.details)
# Group timing data by category
timing_by_category = defaultdict(list)
for data in timing_data:
if "category" in data and "duration" in data:
timing_by_category[data["category"]].append(data["duration"])
# Calculate statistics
category_stats = {}
for category, durations in timing_by_category.items():
if durations:
category_stats[category] = {
"count": len(durations),
"avg_duration": sum(durations) / len(durations),
"min_duration": min(durations),
"max_duration": max(durations),
"total_duration": sum(durations)
}
return {
"trace_count": len(self.entries_by_trace),
"avg_trace_duration": sum(self.trace_durations.values()) / len(self.trace_durations) if self.trace_durations else 0,
"min_trace_duration": min(self.trace_durations.values()) if self.trace_durations else 0,
"max_trace_duration": max(self.trace_durations.values()) if self.trace_durations else 0,
"category_stats": category_stats
}
def get_api_summary(self) -> Dict[str, Any]:
"""
Get a summary of API usage.
Returns:
Dict containing API usage statistics
"""
# Extract API call data
api_calls = []
for trace_id, entries in self.api_calls_by_trace.items():
for entry in entries:
if "API REQUEST DETAILS" in entry.message and entry.details:
api_calls.append({
"trace_id": trace_id,
"type": "request",
"api_name": entry.details.get("api_name", "Unknown"),
"endpoint": entry.details.get("endpoint", "Unknown"),
"method": entry.details.get("method", "Unknown"),
"timestamp": entry.timestamp
})
elif "API RESPONSE DETAILS" in entry.message and entry.details:
api_calls.append({
"trace_id": trace_id,
"type": "response",
"api_name": entry.details.get("api_name", "Unknown"),
"endpoint": entry.details.get("endpoint", "Unknown"),
"status_code": entry.details.get("status_code", 0),
"duration": entry.details.get("duration", 0),
"timestamp": entry.timestamp
})
# Count API calls by name
api_call_counts = Counter()
api_error_counts = Counter()
api_durations = defaultdict(list)
for call in api_calls:
if call["type"] == "request":
api_call_counts[call["api_name"]] += 1
elif call["type"] == "response":
if call["status_code"] >= 400:
api_error_counts[call["api_name"]] += 1
if "duration" in call:
api_durations[call["api_name"]].append(call["duration"])
# Calculate average durations
api_avg_durations = {}
for api_name, durations in api_durations.items():
if durations:
api_avg_durations[api_name] = sum(durations) / len(durations)
return {
"total_api_calls": sum(api_call_counts.values()),
"api_call_counts": dict(api_call_counts.most_common()),
"api_error_counts": dict(api_error_counts.most_common()),
"api_avg_durations": api_avg_durations
}
def get_tool_summary(self) -> Dict[str, Any]:
"""
Get a summary of tool usage.
Returns:
Dict containing tool usage statistics
"""
# Extract tool usage data
tool_usages = []
for trace_id, entries in self.tool_usage_by_trace.items():
for entry in entries:
if "TOOL SELECTION DETAILS" in entry.message and entry.details:
tool_usages.append({
"trace_id": trace_id,
"type": "selection",
"tool_name": entry.details.get("tool_name", "Unknown"),
"reason": entry.details.get("reason", "Unknown"),
"timestamp": entry.timestamp
})
elif "TOOL EXECUTION DETAILS" in entry.message and entry.details:
tool_usages.append({
"trace_id": trace_id,
"type": "execution",
"tool_name": entry.details.get("tool_name", "Unknown"),
"success": entry.details.get("success", False),
"duration": entry.details.get("duration", 0),
"timestamp": entry.timestamp
})
# Count tool selections and executions
tool_selection_counts = Counter()
tool_execution_counts = Counter()
tool_success_counts = Counter()
tool_failure_counts = Counter()
tool_durations = defaultdict(list)
for usage in tool_usages:
if usage["type"] == "selection":
tool_selection_counts[usage["tool_name"]] += 1
elif usage["type"] == "execution":
tool_execution_counts[usage["tool_name"]] += 1
if usage["success"]:
tool_success_counts[usage["tool_name"]] += 1
else:
tool_failure_counts[usage["tool_name"]] += 1
if "duration" in usage:
tool_durations[usage["tool_name"]].append(usage["duration"])
# Calculate average durations and success rates
tool_avg_durations = {}
tool_success_rates = {}
for tool_name, durations in tool_durations.items():
if durations:
tool_avg_durations[tool_name] = sum(durations) / len(durations)
for tool_name, executions in tool_execution_counts.items():
if executions > 0:
successes = tool_success_counts.get(tool_name, 0)
tool_success_rates[tool_name] = (successes / executions) * 100
return {
"total_tool_selections": sum(tool_selection_counts.values()),
"total_tool_executions": sum(tool_execution_counts.values()),
"tool_selection_counts": dict(tool_selection_counts.most_common()),
"tool_execution_counts": dict(tool_execution_counts.most_common()),
"tool_success_counts": dict(tool_success_counts.most_common()),
"tool_failure_counts": dict(tool_failure_counts.most_common()),
"tool_avg_durations": tool_avg_durations,
"tool_success_rates": tool_success_rates
}
def get_trace_summary(self, trace_id: str) -> Dict[str, Any]:
"""
Get a summary of a specific trace.
Args:
trace_id: The trace ID to summarize
Returns:
Dict containing trace summary
"""
if trace_id not in self.entries_by_trace:
return {"error": f"Trace ID {trace_id} not found"}
entries = self.entries_by_trace[trace_id]
errors = self.errors_by_trace.get(trace_id, [])
api_calls = self.api_calls_by_trace.get(trace_id, [])
tool_usages = self.tool_usage_by_trace.get(trace_id, [])
performance = self.performance_by_trace.get(trace_id, [])
# Sort entries by timestamp
sorted_entries = sorted(entries, key=lambda e: e.timestamp)
# Extract workflow steps
workflow_steps = []
for entry in entries:
if "WORKFLOW STEP" in entry.message:
step_match = re.search(r"WORKFLOW STEP: ([^-]+) - (.+)", entry.message)
if step_match:
step_name, description = step_match.groups()
workflow_steps.append({
"step_name": step_name.strip(),
"description": description.strip(),
"timestamp": entry.timestamp
})
# Extract timing data
timing_data = []
for entry in performance:
if "TIMING_DATA" in entry.message and entry.details:
timing_data.append(entry.details)
# Calculate duration
duration = 0
if sorted_entries:
start_time = sorted_entries[0].timestamp
end_time = sorted_entries[-1].timestamp
duration = (end_time - start_time).total_seconds()
return {
"trace_id": trace_id,
"entry_count": len(entries),
"error_count": len(errors),
"api_call_count": len(api_calls),
"tool_usage_count": len(tool_usages),
"duration": duration,
"start_time": sorted_entries[0].timestamp if sorted_entries else None,
"end_time": sorted_entries[-1].timestamp if sorted_entries else None,
"workflow_steps": workflow_steps,
"timing_data": timing_data,
"errors": [{"message": e.message, "timestamp": e.timestamp} for e in errors]
}
def find_common_error_patterns(self) -> List[Dict[str, Any]]:
"""
Find common error patterns across traces.
Returns:
List of error patterns with frequency and examples
"""
# Extract error messages and stack traces
error_messages = []
for trace_id, errors in self.errors_by_trace.items():
for error in errors:
error_type = "Unknown"
error_msg = error.message
# Extract error type and message
if "ERROR_DETAILS" in error.message and error.details:
if "error_type" in error.details:
error_type = error.details["error_type"]
if "error_message" in error.details:
error_msg = error.details["error_message"]
else:
# Try to extract from message
error_match = re.search(r"ERROR: ([^-]+) - (.+)", error.message)
if error_match:
error_type, error_msg = error_match.groups()
error_messages.append({
"trace_id": trace_id,
"error_type": error_type.strip(),
"error_message": error_msg.strip(),
"timestamp": error.timestamp
})
# Group similar error messages
error_patterns = defaultdict(list)
for error in error_messages:
# Create a simplified key for grouping
# Remove specific values like IDs, timestamps, etc.
simplified_msg = re.sub(r'\b[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}\b', '<UUID>', error["error_message"])
simplified_msg = re.sub(r'\b\d+\.\d+\.\d+\.\d+\b', '<IP>', simplified_msg)
simplified_msg = re.sub(r'\b\d{4}-\d{2}-\d{2}\b', '<DATE>', simplified_msg)
simplified_msg = re.sub(r'\b\d+\b', '<NUM>', simplified_msg)
key = f"{error['error_type']}:{simplified_msg}"
error_patterns[key].append(error)
# Create summary of patterns
patterns = []
for key, errors in error_patterns.items():
if len(errors) >= 2: # Only include patterns that occur multiple times
patterns.append({
"error_type": errors[0]["error_type"],
"pattern": errors[0]["error_message"],
"count": len(errors),
"examples": [e["trace_id"] for e in errors[:5]],
"first_occurrence": min(e["timestamp"] for e in errors),
"last_occurrence": max(e["timestamp"] for e in errors)
})
# Sort by frequency
patterns.sort(key=lambda p: p["count"], reverse=True)
return patterns
def find_correlated_errors(self) -> List[Dict[str, Any]]:
"""
Find errors that are correlated (occur together).
Returns:
List of correlated error pairs
"""
# Group errors by trace
errors_by_trace = {}
for trace_id, errors in self.errors_by_trace.items():
error_types = set()
for error in errors:
error_type = "Unknown"
if "ERROR_DETAILS" in error.message and error.details:
if "error_type" in error.details:
error_type = error.details["error_type"]
else:
# Try to extract from message
error_match = re.search(r"ERROR: ([^-]+) -", error.message)
if error_match:
error_type = error_match.group(1).strip()
error_types.add(error_type)
errors_by_trace[trace_id] = error_types
# Find co-occurring error types
error_pairs = Counter()
for trace_id, error_types in errors_by_trace.items():
if len(error_types) >= 2:
# Create pairs of error types
for error1 in error_types:
for error2 in error_types:
if error1 < error2: # Avoid duplicates
error_pairs[(error1, error2)] += 1
# Create correlation summary
correlations = []
for (error1, error2), count in error_pairs.most_common():
correlations.append({
"error_types": [error1, error2],
"count": count,
"examples": [
trace_id for trace_id, error_types in errors_by_trace.items()
if error1 in error_types and error2 in error_types
][:5]
})
return correlations
def identify_bottlenecks(self) -> List[Dict[str, Any]]:
"""
Identify performance bottlenecks.
Returns:
List of identified bottlenecks
"""
# Extract timing data
timing_data = []
for trace_id, entries in self.performance_by_trace.items():
for entry in entries:
if "TIMING_DATA" in entry.message and entry.details:
timing_data.append({
"trace_id": trace_id,
**entry.details
})
# Group by category and function/name
timing_by_key = defaultdict(list)
for data in timing_data:
if "category" in data and "duration" in data:
key = data["category"]
if "function" in data:
key += f":{data['function']}"
elif "name" in data:
key += f":{data['name']}"
timing_by_key[key].append(data["duration"])
# Calculate statistics and identify bottlenecks
bottlenecks = []
for key, durations in timing_by_key.items():
if len(durations) >= 3: # Only consider operations that occur multiple times
avg_duration = sum(durations) / len(durations)
max_duration = max(durations)
min_duration = min(durations)
total_duration = sum(durations)
# Check if this is a potential bottleneck
# Criteria: high average duration or high variability
is_bottleneck = avg_duration > 1.0 or (max_duration / min_duration > 5.0 if min_duration > 0 else False)
if is_bottleneck:
category, name = key.split(":") if ":" in key else (key, "")
bottlenecks.append({
"category": category,
"name": name,
"count": len(durations),
"avg_duration": avg_duration,
"min_duration": min_duration,
"max_duration": max_duration,
"total_duration": total_duration,
"variability": max_duration / min_duration if min_duration > 0 else float('inf')
})
# Sort by average duration
bottlenecks.sort(key=lambda b: b["avg_duration"], reverse=True)
return bottlenecks
def generate_diagnostic_report(self, output_file: str = "gaia_diagnostic_report.json") -> Dict[str, Any]:
"""
Generate a comprehensive diagnostic report.
Args:
output_file: File to save the report to
Returns:
Dict containing the diagnostic report
"""
# Collect all diagnostic information
report = {
"timestamp": datetime.datetime.now().isoformat(),
"trace_count": len(self.entries_by_trace),
"error_summary": self.get_error_summary(),
"performance_summary": self.get_performance_summary(),
"api_summary": self.get_api_summary(),
"tool_summary": self.get_tool_summary(),
"error_patterns": self.find_common_error_patterns(),
"correlated_errors": self.find_correlated_errors(),
"bottlenecks": self.identify_bottlenecks()
}
# Save to file
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(report, f, indent=2, default=str)
logger.info(f"Diagnostic report saved to {output_file}")
return report
def visualize_error_distribution(self, output_file: str = "error_distribution.png"):
"""
Visualize the distribution of errors by type.
Args:
output_file: File to save the visualization to
"""
if not self.error_counts:
logger.warning("No errors found to visualize")
return
# Get top 10 error types
top_errors = self.error_counts.most_common(10)
# Create the plot
plt.figure(figsize=(12, 6))
labels = [e[0] for e in top_errors]
values = [e[1] for e in top_errors]
plt.bar(labels, values, color='salmon')
plt.xlabel('Error Type')
plt.ylabel('Count')
plt.title('Error Distribution by Type')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
# Save the figure
plt.savefig(output_file)
logger.info(f"Error distribution visualization saved to {output_file}")
plt.close()
def visualize_performance_breakdown(self, output_file: str = "performance_breakdown.png"):
"""
Visualize the performance breakdown by category.
Args:
output_file: File to save the visualization to
"""
# Extract timing data
timing_by_category = defaultdict(list)
for trace_id, entries in self.performance_by_trace.items():
for entry in entries:
if "TIMING_DATA" in entry.message and entry.details:
if "category" in entry.details and "duration" in entry.details:
timing_by_category[entry.details["category"]].append(entry.details["duration"])
if not timing_by_category:
logger.warning("No performance data found to visualize")
return
# Calculate average durations
categories = []
avg_durations = []
for category, durations in timing_by_category.items():
if durations:
categories.append(category)
avg_durations.append(sum(durations) / len(durations))
# Sort by average duration
sorted_indices = np.argsort(avg_durations)[::-1]
categories = [categories[i] for i in sorted_indices]
avg_durations = [avg_durations[i] for i in sorted_indices]
# Create the plot
plt.figure(figsize=(12, 6))
plt.bar(categories, avg_durations, color='skyblue')
plt.xlabel('Category')
plt.ylabel('Average Duration (seconds)')
plt.title('Performance Breakdown by Category')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
# Save the figure
plt.savefig(output_file)
logger.info(f"Performance breakdown visualization saved to {output_file}")
plt.close()
def main():
"""Main entry point for the log analyzer."""
import argparse
parser = argparse.ArgumentParser(description="Gaia Log Analyzer")
parser.add_argument("--log-dir", type=str, default="logs", help="Directory containing log files")
parser.add_argument("--report", type=str, default="gaia_diagnostic_report.json", help="Output file for diagnostic report")
parser.add_argument("--trace-id", type=str, help="Specific trace ID to analyze")
parser.add_argument("--visualize", action="store_true", help="Generate visualizations")
args = parser.parse_args()
# Create the analyzer
analyzer = LogAnalyzer(log_dir=args.log_dir)
# Generate diagnostic report
report = analyzer.generate_diagnostic_report(output_file=args.report)
# Print summary
print(f"Analyzed {report['trace_count']} traces")
print(f"Found {report['error_summary']['total_errors']} errors")
print(f"Average trace duration: {report['performance_summary']['avg_trace_duration']:.2f} seconds")
# Generate visualizations if requested
if args.visualize:
analyzer.visualize_error_distribution()
analyzer.visualize_performance_breakdown()
# Analyze specific trace if requested
if args.trace_id:
trace_summary = analyzer.get_trace_summary(args.trace_id)
if "error" in trace_summary:
print(f"Error: {trace_summary['error']}")
else:
print(f"\nTrace ID: {args.trace_id}")
print(f"Duration: {trace_summary['duration']:.2f} seconds")
print(f"Errors: {trace_summary['error_count']}")
print(f"API calls: {trace_summary['api_call_count']}")
print(f"Tool usages: {trace_summary['tool_usage_count']}")
if trace_summary['workflow_steps']:
print("\nWorkflow steps:")
for step in trace_summary['workflow_steps']:
print(f"- {step['step_name']}: {step['description']}")
if trace_summary['errors']:
print("\nErrors:")
for error in trace_summary['errors']:
print(f"- {error['message']}")
if __name__ == "__main__":
main() |