JoachimVC's picture
Implement full GAIA agent solution with formatter and multimodal processing
460ec88
"""
Table Data Processor Component
This module provides capabilities for parsing, analyzing, and extracting information
from tabular data in various formats (markdown tables, CSV, TSV, etc.)
"""
import re
import logging
import csv
import io
from typing import List, Dict, Any, Tuple, Optional, Set, Union
import traceback
import pandas as pd
import numpy as np
from collections import defaultdict
logger = logging.getLogger("gaia_agent.components.table_processor")
class TableProcessor:
"""
Handles parsing, analysis, and operations on tabular data structures.
Provides capabilities for answering questions about table data.
"""
def __init__(self):
"""Initialize the table processor component."""
self.supported_formats = {
'markdown': self._parse_markdown_table,
'csv': self._parse_csv,
'tsv': self._parse_tsv,
'plain': self._parse_plain_table
}
logger.info("TableProcessor initialized")
def process_table_data(self, table_text: str, format_hint: str = None) -> Dict[str, Any]:
"""
Process tabular data from a text representation.
Args:
table_text: Text containing the table data
format_hint: Optional hint about the table format ('markdown', 'csv', 'tsv', 'plain')
Returns:
Dict containing parsed table information:
- headers: List of column headers
- rows: List of rows (each row is a list of values)
- data_types: Dict mapping column names to data types
- dimensions: Tuple of (rows, columns)
- format: Detected format of the table
- success: Boolean indicating successful parsing
- error: Error message if parsing failed
"""
result = {
'headers': [],
'rows': [],
'data_types': {},
'dimensions': (0, 0),
'format': None,
'success': False,
'error': None
}
try:
# If format is provided, try that first
if format_hint and format_hint in self.supported_formats:
try:
headers, rows = self.supported_formats[format_hint](table_text)
result['format'] = format_hint
result['success'] = True
except Exception as e:
logger.warning(f"Failed to parse as {format_hint}, trying auto-detection: {str(e)}")
format_hint = None
# If no format hint or the hinted format failed, auto-detect
if not format_hint or not result['success']:
detected_format = self._detect_table_format(table_text)
if detected_format in self.supported_formats:
headers, rows = self.supported_formats[detected_format](table_text)
result['format'] = detected_format
result['success'] = True
else:
# If format detection failed, try all formats
for fmt, parser in self.supported_formats.items():
try:
headers, rows = parser(table_text)
result['format'] = fmt
result['success'] = True
break
except Exception:
continue
# If parsing succeeded, populate the result
if result['success']:
result['headers'] = headers
result['rows'] = rows
result['dimensions'] = (len(rows), len(headers))
# Determine column data types
result['data_types'] = self._determine_column_types(headers, rows)
else:
result['error'] = "Failed to parse table data in any supported format"
except Exception as e:
error_msg = f"Error processing table data: {str(e)}"
logger.error(error_msg)
logger.debug(traceback.format_exc())
result['error'] = error_msg
def analyze_table(self, table_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Analyze a parsed table to extract summary statistics and insights.
Args:
table_data: Parsed table data (from process_table_data)
Returns:
Dict containing analysis results:
- summary: Text summary of the table
- column_stats: Statistics for each numeric column
- categorical_summaries: Summaries for categorical columns
- correlations: Correlation matrix for numeric columns
- dimensions: Table dimensions (rows, columns)
"""
analysis = {
'summary': None,
'column_stats': {},
'categorical_summaries': {},
'correlations': None,
'dimensions': table_data.get('dimensions', (0, 0))
}
if not table_data.get('success', False) or not table_data.get('rows'):
analysis['summary'] = "No valid table data to analyze"
return analysis
headers = table_data['headers']
rows = table_data['rows']
data_types = table_data['data_types']
# Create a more detailed summary
row_count, col_count = analysis['dimensions']
analysis['summary'] = f"Table with {row_count} rows and {col_count} columns."
# Create a pandas DataFrame for easier analysis
try:
df = self._convert_to_dataframe(headers, rows)
# Calculate statistics for numeric columns
for col in headers:
if data_types.get(col) in ['numeric', 'integer']:
try:
col_stats = {
'min': float(df[col].min()),
'max': float(df[col].max()),
'mean': float(df[col].mean()),
'median': float(df[col].median()),
'std': float(df[col].std()),
'sum': float(df[col].sum()),
'count': int(df[col].count())
}
analysis['column_stats'][col] = col_stats
except Exception as e:
logger.warning(f"Error calculating stats for column {col}: {str(e)}")
elif data_types.get(col) == 'categorical':
try:
value_counts = df[col].value_counts().to_dict()
unique_count = len(value_counts)
most_common = df[col].value_counts().index[0] if not df[col].value_counts().empty else None
cat_summary = {
'unique_values': unique_count,
'most_common': most_common,
'value_counts': value_counts,
'count': int(df[col].count())
}
analysis['categorical_summaries'][col] = cat_summary
except Exception as e:
logger.warning(f"Error analyzing categorical column {col}: {str(e)}")
# Calculate correlations for numeric columns
numeric_cols = [col for col in headers if data_types.get(col) in ['numeric', 'integer']]
if len(numeric_cols) > 1:
try:
corr_matrix = df[numeric_cols].corr().to_dict()
analysis['correlations'] = corr_matrix
except Exception as e:
logger.warning(f"Error calculating correlations: {str(e)}")
except Exception as e:
logger.error(f"Error during table analysis: {str(e)}")
logger.debug(traceback.format_exc())
analysis['error'] = str(e)
return analysis
def answer_table_question(self, question: str, table_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Answer questions about a table based on its content.
Args:
question: Question about the table
table_data: Parsed table data (from process_table_data)
Returns:
Dict containing:
- answer: The answer to the question
- confidence: Confidence score (0-1)
- explanation: Explanation of how the answer was derived
- query_type: Type of query detected (e.g., "sum", "mean", "max", etc.)
"""
result = {
'question': question,
'answer': None,
'confidence': 0.0,
'explanation': None,
'query_type': None
}
if not table_data.get('success', False) or not table_data.get('rows'):
result['answer'] = "Cannot answer the question as the table could not be properly parsed."
result['confidence'] = 0.0
return result
headers = table_data['headers']
rows = table_data['rows']
data_types = table_data['data_types']
# Convert to DataFrame for easier analysis
df = self._convert_to_dataframe(headers, rows)
# Lowercase the question for easier matching
question_lower = question.lower()
# Step 1: Identify the query type
query_types = {
'count': ['how many', 'count', 'number of'],
'sum': ['sum', 'total', 'add'],
'average': ['average', 'mean', 'avg'],
'median': ['median', 'middle'],
'min': ['minimum', 'min', 'smallest', 'lowest'],
'max': ['maximum', 'max', 'largest', 'highest'],
'difference': ['difference', 'gap', 'delta'],
'compare': ['compare', 'greater than', 'less than', 'larger', 'smaller'],
'list': ['list', 'what are', 'show', 'display'],
'unique': ['unique', 'distinct', 'different']
}
detected_query_type = None
for query_type, indicators in query_types.items():
if any(indicator in question_lower for indicator in indicators):
detected_query_type = query_type
break
result['query_type'] = detected_query_type or 'unknown'
# Step 2: Identify the target column(s)
target_columns = []
for col in headers:
if col.lower() in question_lower:
target_columns.append(col)
# If no exact matches, try partial matches
if not target_columns:
for col in headers:
col_parts = col.lower().split()
if any(part in question_lower for part in col_parts if len(part) > 3):
target_columns.append(col)
# If still no matches, use all columns (this is a fallback)
if not target_columns:
target_columns = headers
result['confidence'] = max(0.4, result['confidence']) # Lower confidence
result['explanation'] = "No specific column identified, analyzing all columns."
else:
result['confidence'] = 0.7 # Higher confidence when columns are identified
target_columns_str = ", ".join(target_columns)
result['explanation'] = f"Analyzing columns: {target_columns_str}"
# Step 3: Execute the query based on the type and target columns
try:
if detected_query_type == 'count':
if 'rows' in question_lower or 'entries' in question_lower:
# Count rows
answer = len(rows)
result['answer'] = str(answer)
result['confidence'] = 0.9
result['explanation'] = f"Counted {answer} rows in the table."
elif 'columns' in question_lower:
# Count columns
answer = len(headers)
result['answer'] = str(answer)
result['confidence'] = 0.9
result['explanation'] = f"Counted {answer} columns in the table."
else:
# Count values in specific column(s)
counts = {}
for col in target_columns:
if col in df.columns:
if data_types.get(col) == 'categorical':
value_counts = df[col].value_counts().to_dict()
counts[col] = sum(value_counts.values())
else:
counts[col] = df[col].count()
if counts:
if len(counts) == 1:
col = list(counts.keys())[0]
answer = counts[col]
result['answer'] = str(answer)
result['confidence'] = 0.8
result['explanation'] = f"Counted {answer} non-null values in column '{col}'."
else:
answer_parts = [f"{col}: {count}" for col, count in counts.items()]
result['answer'] = "; ".join(answer_parts)
result['confidence'] = 0.7
result['explanation'] = f"Counted values in multiple columns: {', '.join(counts.keys())}."
elif detected_query_type == 'sum':
sums = {}
for col in target_columns:
if col in df.columns and data_types.get(col) in ['numeric', 'integer']:
sums[col] = df[col].sum()
if sums:
if len(sums) == 1:
col = list(sums.keys())[0]
answer = sums[col]
result['answer'] = str(answer)
result['confidence'] = 0.85
result['explanation'] = f"Calculated sum of {answer} for column '{col}'."
else:
answer_parts = [f"{col}: {sum_val}" for col, sum_val in sums.items()]
result['answer'] = "; ".join(answer_parts)
result['confidence'] = 0.75
result['explanation'] = f"Calculated sums for multiple columns: {', '.join(sums.keys())}."
else:
result['answer'] = "No numeric columns found to sum."
result['confidence'] = 0.5
elif detected_query_type == 'average':
averages = {}
for col in target_columns:
if col in df.columns and data_types.get(col) in ['numeric', 'integer']:
averages[col] = df[col].mean()
if averages:
if len(averages) == 1:
col = list(averages.keys())[0]
answer = averages[col]
result['answer'] = f"{answer:.2f}"
result['confidence'] = 0.85
result['explanation'] = f"Calculated average of {answer:.2f} for column '{col}'."
else:
answer_parts = [f"{col}: {avg:.2f}" for col, avg in averages.items()]
result['answer'] = "; ".join(answer_parts)
result['confidence'] = 0.75
result['explanation'] = f"Calculated averages for multiple columns: {', '.join(averages.keys())}."
else:
result['answer'] = "No numeric columns found to average."
result['confidence'] = 0.5
elif detected_query_type == 'median':
medians = {}
for col in target_columns:
if col in df.columns and data_types.get(col) in ['numeric', 'integer']:
medians[col] = df[col].median()
if medians:
if len(medians) == 1:
col = list(medians.keys())[0]
answer = medians[col]
result['answer'] = f"{answer:.2f}"
result['confidence'] = 0.85
result['explanation'] = f"Calculated median of {answer:.2f} for column '{col}'."
else:
answer_parts = [f"{col}: {med:.2f}" for col, med in medians.items()]
result['answer'] = "; ".join(answer_parts)
result['confidence'] = 0.75
result['explanation'] = f"Calculated medians for multiple columns: {', '.join(medians.keys())}."
else:
result['answer'] = "No numeric columns found to find median."
result['confidence'] = 0.5
elif detected_query_type == 'min':
minimums = {}
for col in target_columns:
if col in df.columns and data_types.get(col) in ['numeric', 'integer']:
minimums[col] = df[col].min()
if minimums:
if len(minimums) == 1:
col = list(minimums.keys())[0]
answer = minimums[col]
result['answer'] = str(answer)
result['confidence'] = 0.85
result['explanation'] = f"Found minimum value of {answer} in column '{col}'."
else:
answer_parts = [f"{col}: {min_val}" for col, min_val in minimums.items()]
result['answer'] = "; ".join(answer_parts)
result['confidence'] = 0.75
result['explanation'] = f"Found minimum values for multiple columns: {', '.join(minimums.keys())}."
else:
result['answer'] = "No numeric columns found to determine minimum."
result['confidence'] = 0.5
elif detected_query_type == 'max':
maximums = {}
for col in target_columns:
if col in df.columns and data_types.get(col) in ['numeric', 'integer']:
maximums[col] = df[col].max()
if maximums:
if len(maximums) == 1:
col = list(maximums.keys())[0]
answer = maximums[col]
result['answer'] = str(answer)
result['confidence'] = 0.85
result['explanation'] = f"Found maximum value of {answer} in column '{col}'."
else:
answer_parts = [f"{col}: {max_val}" for col, max_val in maximums.items()]
result['answer'] = "; ".join(answer_parts)
result['confidence'] = 0.75
result['explanation'] = f"Found maximum values for multiple columns: {', '.join(maximums.keys())}."
else:
result['answer'] = "No numeric columns found to determine maximum."
result['confidence'] = 0.5
elif detected_query_type == 'unique':
uniques = {}
for col in target_columns:
if col in df.columns:
unique_values = df[col].unique().tolist()
if len(unique_values) <= 10: # Limit to reasonable number
uniques[col] = unique_values
else:
uniques[col] = f"{len(unique_values)} unique values"
if uniques:
if len(uniques) == 1:
col = list(uniques.keys())[0]
unique_val = uniques[col]
if isinstance(unique_val, list):
result['answer'] = ", ".join(str(v) for v in unique_val)
else:
result['answer'] = unique_val
result['confidence'] = 0.85
result['explanation'] = f"Found unique values in column '{col}'."
else:
answer_parts = []
for col, vals in uniques.items():
if isinstance(vals, list):
answer_parts.append(f"{col}: {', '.join(str(v) for v in vals)}")
else:
answer_parts.append(f"{col}: {vals}")
result['answer'] = "; ".join(answer_parts)
result['confidence'] = 0.75
result['explanation'] = f"Found unique values for multiple columns: {', '.join(uniques.keys())}."
else:
result['answer'] = "Could not determine unique values for the specified columns."
result['confidence'] = 0.5
elif detected_query_type == 'compare':
# This is a more complex query, try to identify comparison elements
if len(target_columns) >= 2:
col1, col2 = target_columns[:2]
if data_types.get(col1) in ['numeric', 'integer'] and data_types.get(col2) in ['numeric', 'integer']:
# Compare column averages
avg1 = df[col1].mean()
avg2 = df[col2].mean()
if avg1 > avg2:
result['answer'] = f"'{col1}' has a higher average ({avg1:.2f}) than '{col2}' ({avg2:.2f})."
elif avg2 > avg1:
result['answer'] = f"'{col2}' has a higher average ({avg2:.2f}) than '{col1}' ({avg1:.2f})."
else:
result['answer'] = f"'{col1}' and '{col2}' have the same average ({avg1:.2f})."
result['confidence'] = 0.8
result['explanation'] = f"Compared averages of columns '{col1}' and '{col2}'."
else:
result['answer'] = f"Cannot compare non-numeric columns '{col1}' and '{col2}'."
result['confidence'] = 0.7
else:
result['answer'] = "Need at least two columns to compare."
result['confidence'] = 0.6
# Default case if no specific query type was matched
else:
# Provide a general summary of the table
row_count, col_count = table_data['dimensions']
result['answer'] = f"The table has {row_count} rows and {col_count} columns."
result['confidence'] = 0.5
result['explanation'] = "Provided a general summary as the specific query type couldn't be determined."
except Exception as e:
logger.error(f"Error answering table question: {str(e)}")
logger.debug(traceback.format_exc())
result['answer'] = f"Error processing question: {str(e)}"
result['confidence'] = 0.0
result['explanation'] = "An error occurred during analysis."
return result
def check_commutative_property(self, table_data: Dict[str, Any], operation: str) -> Dict[str, Any]:
"""
Check if an operation (like addition, multiplication) is commutative across table data.
Args:
table_data: Parsed table data
operation: Operation to check ('add', 'multiply', '+', '*')
Returns:
Dict with results of commutativity check
"""
result = {
'is_commutative': False,
'explanation': None,
'tested_pairs': [],
'confidence': 0.0
}
if not table_data.get('success', False) or not table_data.get('rows'):
result['explanation'] = "Cannot perform check as the table could not be properly parsed."
return result
# Map operation string to actual operation
operations = {
'add': np.add,
'multiply': np.multiply,
'+': np.add,
'*': np.multiply
}
op_func = operations.get(operation)
if not op_func:
result['explanation'] = f"Unsupported operation: {operation}"
return result
headers = table_data['headers']
rows = table_data['rows']
data_types = table_data['data_types']
# Find numeric columns for testing commutativity
numeric_cols = [col for col in headers if data_types.get(col) in ['numeric', 'integer']]
if len(numeric_cols) < 2:
result['explanation'] = "Need at least two numeric columns to test commutativity."
return result
# Prepare data for testing
df = self._convert_to_dataframe(headers, rows)
# Test commutativity on pairs of columns
commutative_pairs = 0
non_commutative_pairs = 0
tested_pairs = []
for i in range(len(numeric_cols)):
for j in range(i+1, len(numeric_cols)):
col1, col2 = numeric_cols[i], numeric_cols[j]
# Apply operation in both directions
result1 = op_func(df[col1], df[col2])
result2 = op_func(df[col2], df[col1])
# Check if results are equal (within floating-point precision)
is_equal = np.allclose(result1, result2, rtol=1e-05, atol=1e-08, equal_nan=True)
test_result = {
'col1': col1,
'col2': col2,
'is_commutative': is_equal
}
tested_pairs.append(test_result)
if is_equal:
commutative_pairs += 1
else:
non_commutative_pairs += 1
# Determine overall commutativity
total_pairs = commutative_pairs + non_commutative_pairs
if total_pairs > 0:
commutativity_ratio = commutative_pairs / total_pairs
result['is_commutative'] = commutativity_ratio >= 0.99 # Require almost all pairs to be commutative
result['confidence'] = commutativity_ratio
if result['is_commutative']:
result['explanation'] = f"Operation '{operation}' is commutative across all tested column pairs."
else:
result['explanation'] = f"Operation '{operation}' is not commutative for some column pairs."
else:
result['explanation'] = "No column pairs were tested for commutativity."
result['tested_pairs'] = tested_pairs
return result
def _detect_table_format(self, table_text: str) -> str:
"""
Detect the format of a table based on its text representation.
Args:
table_text: Text containing the table
Returns:
Detected format ('markdown', 'csv', 'tsv', 'plain')
"""
# Check for markdown table format (pipes and dashes)
if '|' in table_text and '-+-' in table_text.replace(' ', '') or ('|' in table_text and any(line.strip().startswith('|') for line in table_text.split('\n'))):
return 'markdown'
# Check for CSV (comma-separated)
if ',' in table_text and table_text.count(',') > table_text.count('\n'):
return 'csv'
# Check for TSV (tab-separated)
if '\t' in table_text:
return 'tsv'
# Default to plain text
return 'plain'
def _parse_markdown_table(self, table_text: str) -> Tuple[List[str], List[List[Any]]]:
"""
Parse a markdown-formatted table.
Args:
table_text: Text containing markdown table
Returns:
Tuple of (headers, rows)
"""
lines = table_text.strip().split('\n')
# Find the header row (first row with pipes)
header_row = None
for i, line in enumerate(lines):
if '|' in line:
header_row = i
break
if header_row is None:
raise ValueError("No valid markdown table found")
# Extract headers
header_line = lines[header_row]
headers = [h.strip() for h in header_line.split('|')]
headers = [h for h in headers if h] # Remove empty entries
# Find the separator row
separator_row = header_row + 1
if separator_row < len(lines) and all(c in '-|:' for c in lines[separator_row] if not c.isspace()):
data_start = separator_row + 1
else:
data_start = header_row + 1
# Extract rows
rows = []
for i in range(data_start, len(lines)):
line = lines[i].strip()
if not line or '|' not in line:
continue
row_values = [cell.strip() for cell in line.split('|')]
row_values = [cell for cell in row_values if cell != ''] # Remove empty cells from pipe chars
# Convert values to appropriate types
converted_row = self._convert_values(row_values)
if converted_row: # Skip empty rows
rows.append(converted_row)
return headers, rows
def _parse_csv(self, table_text: str) -> Tuple[List[str], List[List[Any]]]:
"""
Parse a CSV-formatted table.
Args:
table_text: Text containing CSV data
Returns:
Tuple of (headers, rows)
"""
csv_file = io.StringIO(table_text)
reader = csv.reader(csv_file)
all_rows = list(reader)
if not all_rows:
raise ValueError("No data found in CSV text")
headers = all_rows[0]
data_rows = []
for row in all_rows[1:]:
# Skip rows that don't match header length
if len(row) != len(headers):
continue
# Convert values to appropriate types
converted_row = self._convert_values(row)
data_rows.append(converted_row)
return headers, data_rows
def _parse_tsv(self, table_text: str) -> Tuple[List[str], List[List[Any]]]:
"""
Parse a TSV-formatted table.
Args:
table_text: Text containing TSV data
Returns:
Tuple of (headers, rows)
"""
tsv_file = io.StringIO(table_text)
reader = csv.reader(tsv_file, delimiter='\t')
all_rows = list(reader)
if not all_rows:
raise ValueError("No data found in TSV text")
headers = all_rows[0]
data_rows = []
for row in all_rows[1:]:
# Skip rows that don't match header length
if len(row) != len(headers):
continue
# Convert values to appropriate types
converted_row = self._convert_values(row)
data_rows.append(converted_row)
return headers, data_rows
def _parse_plain_table(self, table_text: str) -> Tuple[List[str], List[List[Any]]]:
"""
Parse a plain text table with space delimiters.
Args:
table_text: Text containing plain table data
Returns:
Tuple of (headers, rows)
"""
lines = table_text.strip().split('\n')
if not lines:
raise ValueError("No data found in plain text table")
# Try to detect a delimiter pattern
first_line = lines[0]
columns = []
if ' ' in first_line: # Use double spaces as delimiter
# Split by multiple spaces while preserving quoted content
parts = re.findall(r'[^"]\S+(?:\s+\S+)*[^"]|"[^"]*"', first_line)
headers = [p.strip().strip('"') for p in parts if p.strip()]
else:
# For tables with no clear delimiter, try to split on whitespace
headers = first_line.split()
# Process the data rows
rows = []
for i in range(1, len(lines)):
line = lines[i].strip()
if not line:
continue
# Match the headers method
if ' ' in first_line:
parts = re.findall(r'[^"]\S+(?:\s+\S+)*[^"]|"[^"]*"', line)
values = [p.strip().strip('"') for p in parts if p.strip()]
else:
values = line.split()
# Adjust for cases where we have more or fewer values than headers
if len(values) > len(headers):
values = values[:len(headers)] # Truncate extra values
elif len(values) < len(headers):
values.extend([''] * (len(headers) - len(values))) # Pad with empty values
# Convert values to appropriate types
converted_row = self._convert_values(values)
rows.append(converted_row)
return headers, rows
def _convert_values(self, values: List[str]) -> List[Any]:
"""
Convert string values to appropriate Python types.
Args:
values: List of string values
Returns:
List of values converted to appropriate types
"""
converted = []
for val in values:
val = val.strip()
# Try converting to numeric types
try:
# Try integer first
converted_val = int(val)
except ValueError:
try:
# Then try float
converted_val = float(val)
except ValueError:
# Keep as string if not numeric
converted_val = val
# Handle special values
if val.lower() in ('true', 'yes', 'y'):
converted_val = True
elif val.lower() in ('false', 'no', 'n'):
converted_val = False
elif val.lower() in ('none', 'null', 'na', '-', ''):
converted_val = None
converted.append(converted_val)
return converted
def _determine_column_types(self, headers: List[str], rows: List[List[Any]]) -> Dict[str, str]:
"""
Determine the data type of each column based on its values.
Args:
headers: List of column headers
rows: List of data rows
Returns:
Dict mapping column names to data types
"""
if not rows:
return {h: 'unknown' for h in headers}
col_count = len(headers)
type_counts = {h: {'integer': 0, 'numeric': 0, 'boolean': 0, 'date': 0, 'categorical': 0} for h in headers}
for row in rows:
for i, val in enumerate(row[:col_count]):
col_name = headers[i]
if val is None:
continue # Skip None values for type determination
if isinstance(val, bool):
type_counts[col_name]['boolean'] += 1
elif isinstance(val, int):
type_counts[col_name]['integer'] += 1
elif isinstance(val, float):
type_counts[col_name]['numeric'] += 1
elif isinstance(val, str):
# Try to determine if it's a date
if re.match(r'\d{1,4}[-/]\d{1,2}[-/]\d{1,4}', val):
type_counts[col_name]['date'] += 1
else:
type_counts[col_name]['categorical'] += 1
# Determine the predominant type for each column
data_types = {}
for col in headers:
counts = type_counts[col]
# Check for empty columns
if sum(counts.values()) == 0:
data_types[col] = 'unknown'
continue
# Determine the most common type
max_type = max(counts.items(), key=lambda x: x[1])
most_common_type = max_type[0]
# Special case: if most values are integers but some are float, use numeric
if most_common_type == 'integer' and counts['numeric'] > 0:
data_types[col] = 'numeric'
else:
data_types[col] = most_common_type
return data_types
def _convert_to_dataframe(self, headers: List[str], rows: List[List[Any]]) -> pd.DataFrame:
"""
Convert headers and rows to a pandas DataFrame.
Args:
headers: List of column headers
rows: List of data rows
Returns:
pandas DataFrame
"""
# Create a DataFrame
df = pd.DataFrame(rows, columns=headers)
# Convert columns to appropriate types where possible
for col in df.columns:
# Check if column can be converted to numeric
if df[col].dtype == 'object':
try:
# Try to convert to numeric, coerce errors to NaN
numeric_col = pd.to_numeric(df[col], errors='coerce')
# If conversion successful (not all NaN), update the column
if not numeric_col.isna().all():
df[col] = numeric_col
except:
pass
return df